@inproceedings{chen-yao-2019-closer,
title = "A Closer Look at Recent Results of Verb Selection for Data-to-Text {NLG}",
author = "Chen, Guanyi and
Yao, Jin-Ge",
editor = "van Deemter, Kees and
Lin, Chenghua and
Takamura, Hiroya",
booktitle = "Proceedings of the 12th International Conference on Natural Language Generation",
month = oct # "–" # nov,
year = "2019",
address = "Tokyo, Japan",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-8622/",
doi = "10.18653/v1/W19-8622",
pages = "158--163",
abstract = "Automatic natural language generation systems need to use the contextually-appropriate verbs when describing different kinds of facts or events, which has triggered research interest on verb selection for data-to-text generation. In this paper, we discuss a few limitations of the current task settings and the evaluation metrics. We also provide two simple, efficient, interpretable baseline approaches for statistical selection of trend verbs, which give a strong performance on both previously used evaluation metrics and our new evaluation."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-yao-2019-closer">
<titleInfo>
<title>A Closer Look at Recent Results of Verb Selection for Data-to-Text NLG</title>
</titleInfo>
<name type="personal">
<namePart type="given">Guanyi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jin-Ge</namePart>
<namePart type="family">Yao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2019-oct–nov</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th International Conference on Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kees</namePart>
<namePart type="family">van Deemter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chenghua</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Tokyo, Japan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic natural language generation systems need to use the contextually-appropriate verbs when describing different kinds of facts or events, which has triggered research interest on verb selection for data-to-text generation. In this paper, we discuss a few limitations of the current task settings and the evaluation metrics. We also provide two simple, efficient, interpretable baseline approaches for statistical selection of trend verbs, which give a strong performance on both previously used evaluation metrics and our new evaluation.</abstract>
<identifier type="citekey">chen-yao-2019-closer</identifier>
<identifier type="doi">10.18653/v1/W19-8622</identifier>
<location>
<url>https://aclanthology.org/W19-8622/</url>
</location>
<part>
<date>2019-oct–nov</date>
<extent unit="page">
<start>158</start>
<end>163</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Closer Look at Recent Results of Verb Selection for Data-to-Text NLG
%A Chen, Guanyi
%A Yao, Jin-Ge
%Y van Deemter, Kees
%Y Lin, Chenghua
%Y Takamura, Hiroya
%S Proceedings of the 12th International Conference on Natural Language Generation
%D 2019
%8 oct–nov
%I Association for Computational Linguistics
%C Tokyo, Japan
%F chen-yao-2019-closer
%X Automatic natural language generation systems need to use the contextually-appropriate verbs when describing different kinds of facts or events, which has triggered research interest on verb selection for data-to-text generation. In this paper, we discuss a few limitations of the current task settings and the evaluation metrics. We also provide two simple, efficient, interpretable baseline approaches for statistical selection of trend verbs, which give a strong performance on both previously used evaluation metrics and our new evaluation.
%R 10.18653/v1/W19-8622
%U https://aclanthology.org/W19-8622/
%U https://doi.org/10.18653/v1/W19-8622
%P 158-163
Markdown (Informal)
[A Closer Look at Recent Results of Verb Selection for Data-to-Text NLG](https://aclanthology.org/W19-8622/) (Chen & Yao, INLG 2019)
ACL