Abdelhak Kelious


2024

pdf bib
Investigating strategies for lexical complexity prediction in a multilingual setting using generative language models and supervised approaches
Abdelhak Kelious | Mathieu Constant | Christophe Coeur
Proceedings of the 13th Workshop on Natural Language Processing for Computer Assisted Language Learning

pdf bib
Prédiction de la complexité lexicale : Une étude comparative entre ChatGPT et un modèle dédié à cette tâche.
Abdelhak Kelious | Mathieu Constant | Christophe Coeur
Actes de la 31ème Conférence sur le Traitement Automatique des Langues Naturelles, volume 1 : articles longs et prises de position

Cette étude s’intéresse à la prédiction de la complexité lexicale. Nous explorons des méthodesd’apprentissage profond afin d’évaluer la complexité d’un mot en se basant sur son contexte. Plusspécifiquement, nous examinons comment utiliser des modèles de langue pré-entraînés pour encoderle mot cible et son contexte, en les combinant avec des caractéristiques supplémentaires basées sur lafréquence. Notre approche obtient de meilleurs résultats que les meilleurs systèmes de SemEval-2021(Shardlow et al., 2021). Enfin, nous menons une étude comparative avec ChatGPT afin d’évaluer sonpotentiel pour prédire la complexité lexicale en comparaison avec un modèle dédié à cette tâche.

pdf bib
Complex Word Identification: A Comparative Study between ChatGPT and a Dedicated Model for This Task
Abdelhak Kelious | Mathieu Constant | Christophe Coeur
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

There are several works in natural language processing for identifying lexical complexity. This can be for various reasons, either for simplification, the selection of more suitable content, or for other specific tasks. Words can have multiple definitions and degrees of complexity depending on the context in which they appear. One solution being investigated is lexical complexity prediction, where computational methods are used to evaluate the difficulty of vocabulary for language learners and offer personalized assistance. In this work, we explore deep learning methods to assess the complexity of a word based on its context. Specifically, we investigate how to use pre-trained language models to encode both the sentence and the target word, and then fine-tune them by combining them with additional frequency-based features. Our approach achieved superior results compared to the best systems in SemEval-2021 (Shardlow et al., 2021), as demonstrated by an R2 score of 0.65. Finally, we carry out a comparative study with ChatGPT to assess its potential for predicting lexical complexity, to see whether prompt engineering can be an alternative to this task, we will discuss the advantages and limitations of ChatGPT.

pdf bib
Abdelhak at SemEval-2024 Task 9: Decoding Brainteasers, The Efficacy of Dedicated Models Versus ChatGPT
Abdelhak Kelious | Mounir Okirim
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

This study introduces a dedicated model aimed at solving the BRAINTEASER task 9 , a novel challenge designed to assess models’ lateral thinking capabilities through sentence and word puzzles. Our model demonstrates remarkable efficacy, securing Rank 1 in sentence puzzle solving during the test phase with an overall score of 0.98. Additionally, we explore the comparative performance of ChatGPT, specifically analyzing how variations in temperature settings affect its ability to engage in lateral thinking and problem-solving. Our findings indicate a notable performance disparity between the dedicated model and ChatGPT, underscoring the potential of specialized approaches in enhancing creative reasoning in AI.