Ala Eddine Hachani

Also published as: Ala-eddine Hachani


2018

pdf bib
Approche Hybride pour la translitération de l’Arabizi Algérien : une étude préliminaire (A hybrid approach for the transliteration of Algerian Arabizi: A primary study)
Imane Guellil | Azouaou Faical | Fodil Benali | Ala Eddine Hachani | Houda Saadane
Actes de la Conférence TALN. Volume 1 - Articles longs, articles courts de TALN

Dans cet article, nous présentons une approche hybride pour la translitération de l’arabizi algérien. Nous avons élaboré un ensemble de règles permettant le passage de l’arabizi vers l’arabe. Á partir de ces règles nous générons un ensemble de candidats pour la translitération de chaque mot en arabizi vers l’arabe, et un parmi ces candidats sera ensuite identifié et extrait comme le meilleur candidat. Cette approche a été expérimentée en utilisant trois corpus de tests. Les résultats obtenus montrent une amélioration du score de précision qui était pour le meilleur des cas de l’ordre de 75,11%. Ces résultats ont aussi permis de vérifier que notre approche est très compétitive par rapport aux travaux traitant de la translitération de l’arabizi en général.

pdf bib
Arabizi sentiment analysis based on transliteration and automatic corpus annotation
Imane Guellil | Ahsan Adeel | Faical Azouaou | Fodil Benali | Ala-eddine Hachani | Amir Hussain
Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis

Arabizi is a form of writing Arabic text which relies on Latin letters, numerals and punctuation rather than Arabic letters. In the literature, the difficulties associated with Arabizi sentiment analysis have been underestimated, principally due to the complexity of Arabizi. In this paper, we present an approach to automatically classify sentiments of Arabizi messages into positives or negatives. In the proposed approach, Arabizi messages are first transliterated into Arabic. Afterwards, we automatically classify the sentiment of the transliterated corpus using an automatically annotated corpus. For corpus validation, shallow machine learning algorithms such as Support Vectors Machine (SVM) and Naive Bays (NB) are used. Simulations results demonstrate the outperformance of NB algorithm over all others. The highest achieved F1-score is up to 78% and 76% for manually and automatically transliterated dataset respectively. Ongoing work is aimed at improving the transliterator module and annotated sentiment dataset.