Reward-based finetuning is crucial for aligning language policies with intended behaviors (*e.g.*, creativity and safety). A key challenge is to develop steerable language models that trade-off multiple (conflicting) objectives in a flexible and efficient manner. This paper presents Conditional Language Policy (CLP), a general framework for finetuning language models on multiple objectives. Building on techniques from multi-task training and parameter-efficient finetuning, CLP learn steerable models that effectively trade-off conflicting objectives at *inference time*. Notably, this does not require training or maintaining multiple models to achieve different trade-offs between the objectives. Through extensive experiments and ablations on two summarization datasets, we show that CLP learns steerable language models that outperform and Pareto-dominate the existing approaches for multi-objective
Understanding visually situated language requires interpreting complex layouts of textual and visual elements. Pre-processing tools, such as optical character recognition (OCR), can map document image inputs to textual tokens, then large language models (LLMs) can reason over text.However, such methods have high computational and engineering complexity. Can small pretrained image-to-text models accurately understand visual documents through similar recognition and reasoning steps instead?We propose Rationale Distillation (RD), which incorporates the outputs of OCR tools, LLMs, and larger multimodal models as intermediate “rationales”, and trains a small student model to predict both rationales and answers. On three visual document understanding benchmarks representing infographics, scanned documents, and figures, our Pix2Struct (282M parameters) student model finetuned with RD outperforms the base model by 4-5% absolute accuracy with only 1% higher computational cost.