Alexander Martin


2024

pdf bib
Event-Keyed Summarization
William Gantt | Alexander Martin | Pavlo Kuchmiichuk | Aaron White
Findings of the Association for Computational Linguistics: EMNLP 2024

We introduce *event-keyed summarization* (EKS), a novel task that marries traditional summarization and document-level event extraction, with the goal of generating a contextualized summary for a specific event, given a document and an extracted event structure. We introduce a dataset for this task, MUCSUM, consisting of summaries of all events in the classic MUC-4 dataset, along with a set of baselines that comprises both pretrained LM standards in the summarization literature, as well as larger frontier models. We show that ablations that reduce EKS to traditional summarization or structure-to-text yield inferior summaries of target events and that MUCSUM is a robust benchmark for this task. Lastly, we conduct a human evaluation of both reference and model summaries, and provide some detailed analysis of the results.

pdf bib
Grounding Partially-Defined Events in Multimodal Data
Kate Sanders | Reno Kriz | David Etter | Hannah Recknor | Alexander Martin | Cameron Carpenter | Jingyang Lin | Benjamin Van Durme
Findings of the Association for Computational Linguistics: EMNLP 2024

How are we able to learn about complex current events just from short snippets of video? While natural language enables straightforward ways to represent under-specified, partially observable events, visual data does not facilitate analogous methods and, consequently, introduces unique challenges in event understanding. With the growing prevalence of vision-capable AI agents, these systems must be able to model events from collections of unstructured video data. To tackle robust event modeling in multimodal settings, we introduce a multimodal formulation for partially-defined events and cast the extraction of these events as a three-stage span retrieval task. We propose a corresponding benchmark for this task, MultiVENT-G, that consists of 14.5 hours of densely annotated current event videos and 1,168 text documents, containing 22.8K labeled event-centric entities. We propose a collection of LLM-driven approaches to the task of multimodal event analysis, and evaluate them on MultiVENT-G. Results illustrate the challenges that abstract event understanding poses and demonstrates promise in event-centric video-language systems.

pdf bib
FAMuS: Frames Across Multiple Sources
Siddharth Vashishtha | Alexander Martin | William Gantt | Benjamin Van Durme | Aaron White
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Understanding event descriptions is a central aspect of language processing, but current approaches focus overwhelmingly on single sentences or documents. Aggregating information about an event across documents can offer a much richer understanding. To this end, we present FAMuS, a new corpus of Wikipedia passages that report on some event, paired with underlying, genre-diverse (non-Wikipedia) source articles for the same event. Events and (cross-sentence) arguments in both report and source are annotated against FrameNet, providing broad coverage of different event types. We present results on two key event understanding tasks enabled by FAMuS: source validation—determining whether a document is a valid source for a target report event—and cross-document argument extraction—full-document argument extraction for a target event from both its report and the correct source article.