Amith Ananthram


2024

pdf bib
Social Orientation: A New Feature for Dialogue Analysis
Todd Morrill | Zhaoyuan Deng | Yanda Chen | Amith Ananthram | Colin Wayne Leach | Kathleen McKeown
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

There are many settings where it is useful to predict and explain the success or failure of a dialogue. Circumplex theory from psychology models the social orientations (e.g., Warm-Agreeable, Arrogant-Calculating) of conversation participants and can be used to predict and explain the outcome of social interactions. Our work is novel in its systematic application of social orientation tags to modeling conversation outcomes. In this paper, we introduce a new data set of dialogue utterances machine-labeled with social orientation tags. We show that social orientation tags improve task performance, especially in low-resource settings, on both English and Chinese language benchmarks. We also demonstrate how social orientation tags help explain the outcomes of social interactions when used in neural models. Based on these results showing the utility of social orientation tags for dialogue outcome prediction tasks, we release our data sets, code, and models that are fine-tuned to predict social orientation tags on dialogue utterances.

2023

pdf bib
Check-COVID: Fact-Checking COVID-19 News Claims with Scientific Evidence
Gengyu Wang | Kate Harwood | Lawrence Chillrud | Amith Ananthram | Melanie Subbiah | Kathleen McKeown
Findings of the Association for Computational Linguistics: ACL 2023

We present a new fact-checking benchmark, Check-COVID, that requires systems to verify claims about COVID-19 from news using evidence from scientific articles. This approach to fact-checking is particularly challenging as it requires checking internet text written in everyday language against evidence from journal articles written in formal academic language. Check-COVID contains 1, 504 expert-annotated news claims about the coronavirus paired with sentence-level evidence from scientific journal articles and veracity labels. It includes both extracted (journalist-written) and composed (annotator-written) claims. Experiments using both a fact-checking specific system and GPT-3.5, which respectively achieve F1 scores of 76.99 and 69.90 on this task, reveal the difficulty of automatically fact-checking both claim types and the importance of in-domain data for good performance. Our data and models are released publicly at https://github.com/posuer/Check-COVID.

pdf bib
FeelingBlue: A Corpus for Understanding the Emotional Connotation of Color in Context
Amith Ananthram | Olivia Winn | Smaranda Muresan
Transactions of the Association for Computational Linguistics, Volume 11

While the link between color and emotion has been widely studied, how context-based changes in color impact the intensity of perceived emotions is not well understood. In this work, we present a new multimodal dataset for exploring the emotional connotation of color as mediated by line, stroke, texture, shape, and language. Our dataset, FeelingBlue, is a collection of 19,788 4-tuples of abstract art ranked by annotators according to their evoked emotions and paired with rationales for those annotations. Using this corpus, we present a baseline for a new task: Justified Affect Transformation. Given an image I, the task is to 1) recolor I to enhance a specified emotion e and 2) provide a textual justification for the change in e. Our model is an ensemble of deep neural networks which takes I, generates an emotionally transformed color palette p conditioned on I, applies p to I, and then justifies the color transformation in text via a visual-linguistic model. Experimental results shed light on the emotional connotation of color in context, demonstrating both the promise of our approach on this challenging task and the considerable potential for future investigations enabled by our corpus.1

2022

pdf bib
Seeded Hierarchical Clustering for Expert-Crafted Taxonomies
Anish Saha | Amith Ananthram | Emily Allaway | Heng Ji | Kathleen McKeown
Findings of the Association for Computational Linguistics: EMNLP 2022

Practitioners from many disciplines (e.g., political science) use expert-crafted taxonomies to make sense of large, unlabeled corpora. In this work, we study Seeded Hierarchical Clustering (SHC): the task of automatically fitting unlabeled data to such taxonomies using a small set of labeled examples. We propose HierSeed, a novel weakly supervised algorithm for this task that uses only a small set of labeled seed examples in a computation and data efficient manner. HierSeed assigns documents to topics by weighing document density against topic hierarchical structure. It outperforms unsupervised and supervised baselines for the SHC task on three real-world datasets.

2020

pdf bib
Event-Guided Denoising for Multilingual Relation Learning
Amith Ananthram | Emily Allaway | Kathleen McKeown
Proceedings of the 28th International Conference on Computational Linguistics

General purpose relation extraction has recently seen considerable gains in part due to a massively data-intensive distant supervision technique from Soares et al. (2019) that produces state-of-the-art results across many benchmarks. In this work, we present a methodology for collecting high quality training data for relation extraction from unlabeled text that achieves a near-recreation of their zero-shot and few-shot results at a fraction of the training cost. Our approach exploits the predictable distributional structure of date-marked news articles to build a denoised corpus – the extraction process filters out low quality examples. We show that a smaller multilingual encoder trained on this corpus performs comparably to the current state-of-the-art (when both receive little to no fine-tuning) on few-shot and standard relation benchmarks in English and Spanish despite using many fewer examples (50k vs. 300mil+).