Atanas Atanasov


2024

pdf bib
Dependency Parser for Bulgarian
Atanas Atanasov
Proceedings of the Sixth International Conference on Computational Linguistics in Bulgaria (CLIB 2024)

This paper delves into the implementation of a Biaffine Attention Model, a sophisticated neural network architecture employed for dependency parsing tasks. Proposed by Dozat and Manning, this model is applied to Bulgarian language processing. The model’s training and evaluation are conducted using the Bulgarian Universal Dependencies dataset. The paper offers a comprehensive explanation of the model’s architecture and the data preparation process, aiming to demonstrate that for highly inflected languages, the inclusion of two additional input layers - lemmas and language-specific morphological information - is beneficial. The results of the experiments are subsequently presented and discussed. The paper concludes with a reflection on the model’s performance and suggestions for potential future work.

2020

pdf bib
Predicting the Topical Stance and Political Leaning of Media using Tweets
Peter Stefanov | Kareem Darwish | Atanas Atanasov | Preslav Nakov
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Discovering the stances of media outlets and influential people on current, debatable topics is important for social statisticians and policy makers. Many supervised solutions exist for determining viewpoints, but manually annotating training data is costly. In this paper, we propose a cascaded method that uses unsupervised learning to ascertain the stance of Twitter users with respect to a polarizing topic by leveraging their retweet behavior; then, it uses supervised learning based on user labels to characterize both the general political leaning of online media and of popular Twitter users, as well as their stance with respect to the target polarizing topic. We evaluate the model by comparing its predictions to gold labels from the Media Bias/Fact Check website, achieving 82.6% accuracy.

2019

pdf bib
Predicting the Role of Political Trolls in Social Media
Atanas Atanasov | Gianmarco De Francisci Morales | Preslav Nakov
Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)

We investigate the political roles of “Internet trolls” in social media. Political trolls, such as the ones linked to the Russian Internet Research Agency (IRA), have recently gained enormous attention for their ability to sway public opinion and even influence elections. Analysis of the online traces of trolls has shown different behavioral patterns, which target different slices of the population. However, this analysis is manual and labor-intensive, thus making it impractical as a first-response tool for newly-discovered troll farms. In this paper, we show how to automate this analysis by using machine learning in a realistic setting. In particular, we show how to classify trolls according to their political role —left, news feed, right— by using features extracted from social media, i.e., Twitter, in two scenarios: (i) in a traditional supervised learning scenario, where labels for trolls are available, and (ii) in a distant supervision scenario, where labels for trolls are not available, and we rely on more-commonly-available labels for news outlets mentioned by the trolls. Technically, we leverage the community structure and the text of the messages in the online social network of trolls represented as a graph, from which we extract several types of learned representations, i.e., embeddings, for the trolls. Experiments on the “IRA Russian Troll” dataset show that our methodology improves over the state-of-the-art in the first scenario, while providing a compelling case for the second scenario, which has not been explored in the literature thus far.

pdf bib
Resolving Gendered Ambiguous Pronouns with BERT
Matei Ionita | Yury Kashnitsky | Ken Krige | Vladimir Larin | Atanas Atanasov | Dennis Logvinenko
Proceedings of the First Workshop on Gender Bias in Natural Language Processing

Pronoun resolution is part of coreference resolution, the task of pairing an expression to its referring entity. This is an important task for natural language understanding and a necessary component of machine translation systems, chat bots and assistants. Neural machine learning systems perform far from ideally in this task, reaching as low as 73% F1 scores on modern benchmark datasets. Moreover, they tend to perform better for masculine pronouns than for feminine ones. Thus, the problem is both challenging and important for NLP researchers and practitioners. In this project, we describe our BERT-based approach to solving the problem of gender-balanced pronoun resolution. We are able to reach 92% F1 score and a much lower gender bias on the benchmark dataset shared by Google AI Language team.

2018

pdf bib
Tweety at SemEval-2018 Task 2: Predicting Emojis using Hierarchical Attention Neural Networks and Support Vector Machine
Daniel Kopev | Atanas Atanasov | Dimitrina Zlatkova | Momchil Hardalov | Ivan Koychev | Ivelina Nikolova | Galia Angelova
Proceedings of the 12th International Workshop on Semantic Evaluation

We present the system built for SemEval-2018 Task 2 on Emoji Prediction. Although Twitter messages are very short we managed to design a wide variety of features: textual, semantic, sentiment, emotion-, and color-related ones. We investigated different methods of text preprocessing including replacing text emojis with respective tokens and splitting hashtags to capture more meaning. To represent text we used word n-grams and word embeddings. We experimented with a wide range of classifiers and our best results were achieved using a SVM-based classifier and a Hierarchical Attention Neural Network.

2016

pdf bib
SynTags – Web Interface for Syntactic and Semantic Annotation
Atanas Atanasov
Proceedings of the Second International Conference on Computational Linguistics in Bulgaria (CLIB 2016)

This paper presents a web tool for syntactic and semantic annotation and two of its applications. It gives the linguists the possibility to work with corpora and syntactic and semantic frames in XML format without having computer skills. The system is OS and platform independent and could be used both online and offline.