In the last decades, computational linguistics has become increasingly interested in annotation schemes that aim at an adequate description of the meaning of the sentences and texts. Discussions are ongoing on an appropriate annotation scheme for a large and complex amount of diverse information. In this contribution devoted to description of polyfunctional uninflected words (namely particles), i.e. words which, although having only one paradigmatic form, can have several different syntactic functions and even express relatively different semantic distinctions, we argue that it is the multi-layer system (linked from meaning to text) that allows a comprehensive description of the relations between morphological properties, syntactic function and expressed meaning, and thus contributes to greater accuracy in the description of the phenomena concerned and to the overall consistency of the annotated data. These aspects are demonstrated within the Prague Dependency Treebank annotation scheme, whose pioneering proposal can be found in the first COLING proceedings from 1965 (Sgall 1965), and to this day, the concept has proved to be sound and serves very well for complex annotation.
Recently, many corpora have been developed that contain multiple annotations of various linguistic phenomena, from morphological categories of words through the syntactic structure of sentences to discourse and coreference relations in texts. Discussions are ongoing on an appropriate annotation scheme for a large amount of diverse information. In our contribution we express our conviction that a multilayer annotation scheme offers to view the language system in its complexity and in the interaction of individual phenomena and that there are at least two aspects that support such a scheme: (i) A multilayer annotation scheme makes it possible to use the annotation of one layer to design the annotation of another layer(s) both conceptually and in a form of a pre-annotation procedure or annotation checking rules. (ii) A multilayer annotation scheme presents a reliable ground for corpus studies based on features across the layers. These aspects are demonstrated on the case of the Prague Dependency Treebank. Its multilayer annotation scheme withstood the test of time and serves well also for complex textual annotations, in which earlier morpho-syntactic annotations are advantageously used. In addition to a reference to the previous projects that utilise its annotation scheme, we present several current investigations.
This paper presents an analysis of annotation using an automatic pre-annotation for a mid-level annotation complexity task - dependency syntax annotation. It compares the annotation efforts made by annotators using a pre-annotated version (with a high-accuracy parser) and those made by fully manual annotation. The aim of the experiment is to judge the final annotation quality when pre-annotation is used. In addition, it evaluates the effect of automatic linguistically-based (rule-formulated) checks and another annotation on the same data available to the annotators, and their influence on annotation quality and efficiency. The experiment confirmed that the pre-annotation is an efficient tool for faster manual syntactic annotation which increases the consistency of the resulting annotation without reducing its quality.
We present a richly annotated and genre-diversified language resource, the Prague Dependency Treebank-Consolidated 1.0 (PDT-C 1.0), the purpose of which is - as it always been the case for the family of the Prague Dependency Treebanks - to serve both as a training data for various types of NLP tasks as well as for linguistically-oriented research. PDT-C 1.0 contains four different datasets of Czech, uniformly annotated using the standard PDT scheme (albeit not everything is annotated manually, as we describe in detail here). The texts come from different sources: daily newspaper articles, Czech translation of the Wall Street Journal, transcribed dialogs and a small amount of user-generated, short, often non-standard language segments typed into a web translator. Altogether, the treebank contains around 180,000 sentences with their morphological, surface and deep syntactic annotation. The diversity of the texts and annotations should serve well the NLP applications as well as it is an invaluable resource for linguistic research, including comparative studies regarding texts of different genres. The corpus is publicly and freely available.