Beilei Xiang


2021

pdf bib
CLiMP: A Benchmark for Chinese Language Model Evaluation
Beilei Xiang | Changbing Yang | Yu Li | Alex Warstadt | Katharina Kann
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Linguistically informed analyses of language models (LMs) contribute to the understanding and improvement of such models. Here, we introduce the corpus of Chinese linguistic minimal pairs (CLiMP) to investigate what knowledge Chinese LMs acquire. CLiMP consists of sets of 1000 minimal pairs (MPs) for 16 syntactic contrasts in Chinese, covering 9 major Chinese linguistic phenomena. The MPs are semi-automatically generated, and human agreement with the labels in CLiMP is 95.8%. We evaluate 11 different LMs on CLiMP, covering n-grams, LSTMs, and Chinese BERT. We find that classifier–noun agreement and verb complement selection are the phenomena that models generally perform best at. However, models struggle the most with the ba construction, binding, and filler-gap dependencies. Overall, Chinese BERT achieves an 81.8% average accuracy, while the performances of LSTMs and 5-grams are only moderately above chance level.

2020

pdf bib
Linguist vs. Machine: Rapid Development of Finite-State Morphological Grammars
Sarah Beemer | Zak Boston | April Bukoski | Daniel Chen | Princess Dickens | Andrew Gerlach | Torin Hopkins | Parth Anand Jawale | Chris Koski | Akanksha Malhotra | Piyush Mishra | Saliha Muradoglu | Lan Sang | Tyler Short | Sagarika Shreevastava | Elizabeth Spaulding | Testumichi Umada | Beilei Xiang | Changbing Yang | Mans Hulden
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

Sequence-to-sequence models have proven to be highly successful in learning morphological inflection from examples as the series of SIGMORPHON/CoNLL shared tasks have shown. It is usually assumed, however, that a linguist working with inflectional examples could in principle develop a gold standard-level morphological analyzer and generator that would surpass a trained neural network model in accuracy of predictions, but that it may require significant amounts of human labor. In this paper, we discuss an experiment where a group of people with some linguistic training develop 25+ grammars as part of the shared task and weigh the cost/benefit ratio of developing grammars by hand. We also present tools that can help linguists triage difficult complex morphophonological phenomena within a language and hypothesize inflectional class membership. We conclude that a significant development effort by trained linguists to analyze and model morphophonological patterns are required in order to surpass the accuracy of neural models.