Bipesh Subedi


2024

pdf bib
Exploring the Potential of Large Language Models (LLMs) for Low-resource Languages: A Study on Named-Entity Recognition (NER) and Part-Of-Speech (POS) Tagging for Nepali Language
Bipesh Subedi | Sunil Regmi | Bal Krishna Bal | Praveen Acharya
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large Language Models (LLMs) have made significant advancements in Natural Language Processing (NLP) by excelling in various NLP tasks. This study specifically focuses on evaluating the performance of LLMs for Named Entity Recognition (NER) and Part-of-Speech (POS) tagging for a low-resource language, Nepali. The aim is to study the effectiveness of these models for languages with limited resources by conducting experiments involving various parameters and fine-tuning and evaluating two datasets namely, ILPRL and EBIQUITY. In this work, we have experimented with eight LLMs for Nepali NER and POS tagging. While some prior works utilized larger datasets than ours, our contribution lies in presenting a comprehensive analysis of multiple LLMs in a unified setting. The findings indicate that NepBERTa, trained solely in the Nepali language, demonstrated the highest performance with F1-scores of 0.76 and 0.90 in ILPRL dataset. Similarly, it achieved 0.79 and 0.97 in EBIQUITY dataset for NER and POS respectively. This study not only highlights the potential of LLMs in performing classification tasks for low-resource languages but also compares their performance with that of alternative approaches deployed for the tasks.

2022

pdf bib
CNN-Transformer based Encoder-Decoder Model for Nepali Image Captioning
Bipesh Subedi | Bal Krishna Bal
Proceedings of the 19th International Conference on Natural Language Processing (ICON)

Many image captioning tasks have been carried out in recent years, the majority of the work being for the English language. A few research works have also been carried out for Hindi and Bengali languages in the domain. Unfortunately, not much research emphasis seems to be given to the Nepali language in this direction. Furthermore, the datasets are also not publicly available in the Nepali language. The aim of this research is to prepare a dataset with Nepali captions and develop a deep learning model based on the Convolutional Neural Network (CNN) and Transformer combined model to automatically generate image captions in the Nepali language. The dataset for this work is prepared by applying different data preprocessing techniques on the Flickr8k dataset. The preprocessed data is then passed to the CNN-Transformer model to generate image captions. ResNet-101 and EfficientNetB0 are the two pre-trained CNN models employed for this work. We have achieved some promising results which can be further improved in the future.