Bradley Malin
2023
SAC3: Reliable Hallucination Detection in Black-Box Language Models via Semantic-aware Cross-check Consistency
Jiaxin Zhang
|
Zhuohang Li
|
Kamalika Das
|
Bradley Malin
|
Sricharan Kumar
Findings of the Association for Computational Linguistics: EMNLP 2023
Hallucination detection is a critical step toward understanding the trustworthiness of modern language models (LMs). To achieve this goal, we re-examine existing detection approaches based on the self-consistency of LMs and uncover two types of hallucinations resulting from 1) question-level and 2) model-level, which cannot be effectively identified through self-consistency check alone. Building upon this discovery, we propose a novel sampling-based method, i.e., semantic-aware cross-check consistency (SAC3) that expands on the principle of self-consistency checking. Our SAC3 approach incorporates additional mechanisms to detect both question-level and model-level hallucinations by leveraging advances including semantically equivalent question perturbation and cross-model response consistency checking. Through extensive and systematic empirical analysis, we demonstrate that SAC3 outperforms the state of the art in detecting both non-factual and factual statements across multiple question-answering and open-domain generation benchmarks.
2019
A Semantic Cover Approach for Topic Modeling
Rajagopal Venkatesaramani
|
Doug Downey
|
Bradley Malin
|
Yevgeniy Vorobeychik
Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019)
We introduce a novel topic modeling approach based on constructing a semantic set cover for clusters of similar documents. Specifically, our approach first clusters documents using their Tf-Idf representation, and then covers each cluster with a set of topic words based on semantic similarity, defined in terms of a word embedding. Computing a topic cover amounts to solving a minimum set cover problem. Our evaluation compares our topic modeling approach to Latent Dirichlet Allocation (LDA) on three metrics: 1) qualitative topic match, measured using evaluations by Amazon Mechanical Turk (MTurk) workers, 2) performance on classification tasks using each topic model as a sparse feature representation, and 3) topic coherence. We find that qualitative judgments significantly favor our approach, the method outperforms LDA on topic coherence, and is comparable to LDA on document classification tasks.
Search
Fix data
Co-authors
- Kamalika Das 1
- Doug Downey 1
- Sricharan Kumar 1
- Zhuohang Li 1
- Rajagopal Venkatesaramani 1
- show all...