Brendan Callahan


2018

pdf bib
Learning Translations via Images with a Massively Multilingual Image Dataset
John Hewitt | Daphne Ippolito | Brendan Callahan | Reno Kriz | Derry Tanti Wijaya | Chris Callison-Burch
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We conduct the most comprehensive study to date into translating words via images. To facilitate research on the task, we introduce a large-scale multilingual corpus of images, each labeled with the word it represents. Past datasets have been limited to only a few high-resource languages and unrealistically easy translation settings. In contrast, we have collected by far the largest available dataset for this task, with images for approximately 10,000 words in each of 100 languages. We run experiments on a dozen high resource languages and 20 low resources languages, demonstrating the effect of word concreteness and part-of-speech on translation quality. %We find that while image features work best for concrete nouns, they are sometimes effective on other parts of speech. To improve image-based translation, we introduce a novel method of predicting word concreteness from images, which improves on a previous state-of-the-art unsupervised technique. This allows us to predict when image-based translation may be effective, enabling consistent improvements to a state-of-the-art text-based word translation system. Our code and the Massively Multilingual Image Dataset (MMID) are available at http://multilingual-images.org/.

2017

pdf bib
Learning Translations via Matrix Completion
Derry Tanti Wijaya | Brendan Callahan | John Hewitt | Jie Gao | Xiao Ling | Marianna Apidianaki | Chris Callison-Burch
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Bilingual Lexicon Induction is the task of learning word translations without bilingual parallel corpora. We model this task as a matrix completion problem, and present an effective and extendable framework for completing the matrix. This method harnesses diverse bilingual and monolingual signals, each of which may be incomplete or noisy. Our model achieves state-of-the-art performance for both high and low resource languages.

2014

pdf bib
Collecting Natural SMS and Chat Conversations in Multiple Languages: The BOLT Phase 2 Corpus
Zhiyi Song | Stephanie Strassel | Haejoong Lee | Kevin Walker | Jonathan Wright | Jennifer Garland | Dana Fore | Brian Gainor | Preston Cabe | Thomas Thomas | Brendan Callahan | Ann Sawyer
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

The DARPA BOLT Program develops systems capable of allowing English speakers to retrieve and understand information from informal foreign language genres. Phase 2 of the program required large volumes of naturally occurring informal text (SMS) and chat messages from individual users in multiple languages to support evaluation of machine translation systems. We describe the design and implementation of a robust collection system capable of capturing both live and archived SMS and chat conversations from willing participants. We also discuss the challenges recruitment at a time when potential participants have acute and growing concerns about their personal privacy in the realm of digital communication, and we outline the techniques adopted to confront those challenges. Finally, we review the properties of the resulting BOLT Phase 2 Corpus, which comprises over 6.5 million words of naturally-occurring chat and SMS in English, Chinese and Egyptian Arabic.

2012

pdf bib
Annotation Trees: LDC’s customizable, extensible, scalable, annotation infrastructure
Jonathan Wright | Kira Griffitt | Joe Ellis | Stephanie Strassel | Brendan Callahan
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

In recent months, LDC has developed a web-based annotation infrastructure centered around a tree model of annotations and a Ruby on Rails application called the LDC User Interface (LUI). The effort aims to centralize all annotation into this single platform, which means annotation is always available remotely, with no more software required than a web browser. While the design is monolithic in the sense of handling any number of annotation projects, it is also scalable, as it is distributed over many physical and virtual machines. Furthermore, minimizing customization was a core design principle, and new functionality can be plugged in without writing a full application. The creation and customization of GUIs is itself done through the web interface, without writing code, with the aim of eventually allowing project managers to create a new task without developer intervention. Many of the desirable features follow from the model of annotations as trees, and the operationalization of annotation as tree modification.