Cam-Tu Nguyen

Also published as: Cẩm Tú Nguyễn, Cam Tu Nguyen


2025

pdf bib
Momentum Posterior Regularization for Multi-hop Dense Retrieval
Zehua Xia | Yuyang Wu | Yiyun Xia | Cam Tu Nguyen
Proceedings of the 31st International Conference on Computational Linguistics

Multi-hop question answering (QA) often requires sequential retrieval (multi-hop retrieval), where each hop retrieves missing knowledge based on information from previous hops. To facilitate more effective retrieval, we aim to distill knowledge from a posterior retrieval, which has access to posterior information like an answer, into a prior retrieval used during inference when such information is unavailable. Unfortunately, current methods for knowledge distillation in one-time retrieval are ineffective for multi-hop QA due to two issues: 1) posterior information is often defined as the response (i.e. answers), which may not clearly connect to the query without intermediate retrieval; and 2) the large knowledge gap between prior and posterior retrievals makes distillation using existing methods unstable, even resulting in performance loss. As such, we propose MoPo (Momentum Posterior Regularization) with two key innovations: 1) Posterior information of one hop is defined as a query-focus summary from the golden knowledge of the previous and current hops; 2) We develop an effective training strategy where the posterior retrieval is updated along with the prior retrieval via momentum moving average method, allowing smoother and effective distillation. Experiments on HotpotQA and StrategyQA demonstrate that MoPo outperforms existing baselines in both retrieval and downstream QA tasks.

2022

pdf bib
Doc2Bot: Accessing Heterogeneous Documents via Conversational Bots
Haomin Fu | Yeqin Zhang | Haiyang Yu | Jian Sun | Fei Huang | Luo Si | Yongbin Li | Cam Tu Nguyen
Findings of the Association for Computational Linguistics: EMNLP 2022

This paper introduces Doc2Bot, a novel dataset for building machines that help users seek information via conversations. This is of particular interest for companies and organizations that own a large number of manuals or instruction books. Despite its potential, the nature of our task poses several challenges: (1) documents contain various structures that hinder the ability of machines to comprehend, and (2) user information needs are often underspecified. Compared to prior datasets that either focus on a single structural type or overlook the role of questioning to uncover user needs, the Doc2Bot dataset is developed to target such challenges systematically. Our dataset contains over 100,000 turns based on Chinese documents from five domains, larger than any prior document-grounded dialog dataset for information seeking. We propose three tasks in Doc2Bot: (1) dialog state tracking to track user intentions, (2) dialog policy learning to plan system actions and contents, and (3) response generation which generates responses based on the outputs of the dialog policy. Baseline methods based on the latest deep learning models are presented, indicating that our proposed tasks are challenging and worthy of further research.

2018

pdf bib
Joint learning of frequency and word embeddings for multilingual readability assessment
Dieu-Thu Le | Cam-Tu Nguyen | Xiaoliang Wang
Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications

This paper describes two models that employ word frequency embeddings to deal with the problem of readability assessment in multiple languages. The task is to determine the difficulty level of a given document, i.e., how hard it is for a reader to fully comprehend the text. The proposed models show how frequency information can be integrated to improve the readability assessment. The experimental results testing on both English and Chinese datasets show that the proposed models improve the results notably when comparing to those using only traditional word embeddings.

pdf bib
Dave the debater: a retrieval-based and generative argumentative dialogue agent
Dieu Thu Le | Cam-Tu Nguyen | Kim Anh Nguyen
Proceedings of the 5th Workshop on Argument Mining

In this paper, we explore the problem of developing an argumentative dialogue agent that can be able to discuss with human users on controversial topics. We describe two systems that use retrieval-based and generative models to make argumentative responses to the users. The experiments show promising results although they have been trained on a small dataset.

2008

pdf bib
Word Segmentation of Vietnamese Texts: a Comparison of Approaches
Quang Thắng Đinh | Hồng Phương Lê | Thị Minh Huyền Nguyễn | Cẩm Tú Nguyễn | Mathias Rossignol | Xuân Lương Vũ
Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)

We present in this paper a comparison between three segmentation systems for the Vietnamese language. Indeed, the majority of Vietnamese words is built by semantic composition from about 7,000 syllables, which also have a meaning as isolated words. So the identification of word boundaries in a text is not a simple task, and ambiguities often appear. Beyond the presentation of the tested systems, we also propose a standard definition for word segmentation in Vietnamese, and introduce a reference corpus developed for the purpose of evaluating such a task. The results observed confirm that it can be relatively well treated by automatic means, although a solution needs to be found to take into account out-of-vocabulary words.

2006

pdf bib
Vietnamese Word Segmentation with CRFs and SVMs: An Investigation
Cam-Tu Nguyen | Trung-Kien Nguyen | Xuan-Hieu Phan | Le-Minh Nguyen | Quang-Thuy Ha
Proceedings of the 20th Pacific Asia Conference on Language, Information and Computation