Carolyn Anderson
2024
A Prompting Assignment for Exploring Pretrained LLMs
Carolyn Anderson
Proceedings of the Sixth Workshop on Teaching NLP
As the scale of publicly-available large language models (LLMs) has increased, so has interest in few-shot prompting methods. This paper presents an assignment that asks students to explore three aspects of large language model capabilities (commonsense reasoning, factuality, and wordplay) with a prompt engineering focus. The assignment consists of three tasks designed to share a common programming framework, so that students can reuse and adapt code from earlier tasks. Two of the tasks also involve dataset construction: students are asked to construct a simple dataset for the wordplay task, and a more challenging dataset for the factuality task. In addition, the assignment includes reflection questions that ask students to think critically about what they observe.
Exploring Language Representation through a Resource Inventory Project
Carolyn Anderson
Proceedings of the Sixth Workshop on Teaching NLP
The increasing scale of large language models has led some students to wonder what contributions can be made in academia. However, students are often unaware that LLM-based approaches are not feasible for the majority of the world’s languages due to lack of data availability. This paper presents a research project in which students explore the issue of language representation by creating an inventory of the data, preprocessing, and model resources available for a less-resourced language. Students are put into small groups and assigned a language to research. Within the group, students take on one of three roles: dataset investigator, preprocessing investigator, or downstream task investigator. Students then work together to create a 7-page research report about their language.
StudentEval: A Benchmark of Student-Written Prompts for Large Language Models of Code
Hannah Babe
|
Sydney Nguyen
|
Yangtian Zi
|
Arjun Guha
|
Molly Feldman
|
Carolyn Anderson
Findings of the Association for Computational Linguistics: ACL 2024
Code LLMs have the potential to make it easier for non-experts to understand and write code. However, current CodeLLM benchmarks rely on a single expert-written prompt per problem, making it hard to generalize their success to non-expert users. In this paper, we present a new natural-language-to-code benchmark of prompts written by a key population of non-experts: beginning programmers. StudentEval contains 1,749 prompts written by 80 students who have only completed one introductory Python course. StudentEval contains numerous non-expert prompts describing the same problem, enabling exploration of key factors in prompt success. We use StudentEval to evaluate 12 Code LLMs and find that StudentEval is a better discriminator of model performance than existing benchmarks. Our analysis of student prompting strategies reveals that nondeterministic LLM sampling can mislead students about the quality of their descriptions, a finding with key implications for Code LLMs in education.
2021
ProSPer: Probing Human and Neural Network Language Model Understanding of Spatial Perspective
Tessa Masis
|
Carolyn Anderson
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
Understanding perspectival language is important for applications like dialogue systems and human-robot interaction. We propose a probe task that explores how well language models understand spatial perspective. We present a dataset for evaluating perspective inference in English, ProSPer, and use it to explore how humans and Transformer-based language models infer perspective. Although the best bidirectional model performs similarly to humans, they display different strengths: humans outperform neural networks in conversational contexts, while RoBERTa excels at written genres.
Search
Co-authors
- Hannah Babe 1
- Sydney Nguyen 1
- Yangtian Zi 1
- Arjun Guha 1
- Molly Feldman 1
- show all...