Chang-Hao Chen
2021
Classification of Tweets Self-reporting Adverse Pregnancy Outcomes and Potential COVID-19 Cases Using RoBERTa Transformers
Lung-Hao Lee
|
Man-Chen Hung
|
Chien-Huan Lu
|
Chang-Hao Chen
|
Po-Lei Lee
|
Kuo-Kai Shyu
Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task
This study describes our proposed model design for SMM4H 2021 shared tasks. We fine-tune the language model of RoBERTa transformers and their connecting classifier to complete the classification tasks of tweets for adverse pregnancy outcomes (Task 4) and potential COVID-19 cases (Task 5). The evaluation metric is F1-score of the positive class for both tasks. For Task 4, our best score of 0.93 exceeded the mean score of 0.925. For Task 5, our best of 0.75 exceeded the mean score of 0.745.