Charu Karakkaparambil James


2024

pdf bib
Characterizing Text Datasets with Psycholinguistic Features
Marcio Monteiro | Charu Karakkaparambil James | Marius Kloft | Sophie Fellenz
Findings of the Association for Computational Linguistics: EMNLP 2024

Fine-tuning pretrained language models on task-specific data is a common practice in Natural Language Processing (NLP) applications. However, the number of pretrained models available to choose from can be very large, and it remains unclear how to select the optimal model without spending considerable amounts of computational resources, especially for the text domain. To address this problem, we introduce PsyMatrix, a novel framework designed to efficiently characterize text datasets. PsyMatrix evaluates multiple dimensions of text and discourse, producing interpretable, low-dimensional embeddings. Our framework has been tested using a meta-dataset repository that includes the performance of 24 pretrained large language models fine-tuned across 146 classification datasets. Using the proposed embeddings, we successfully developed a meta-learning system capable of recommending the most effective pretrained models (optimal and near-optimal) for fine-tuning on new datasets.

pdf bib
Evaluating Dynamic Topic Models
Charu Karakkaparambil James | Mayank Nagda | Nooshin Haji Ghassemi | Marius Kloft | Sophie Fellenz
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

There is a lack of quantitative measures to evaluate the progression of topics through time in dynamic topic models (DTMs). Filling this gap, we propose a novel evaluation measure for DTMs that analyzes the changes in the quality of each topic over time. Additionally, we propose an extension combining topic quality with the model’s temporal consistency. We demonstrate the utility of the proposed measure by applying it to synthetic data and data from existing DTMs, including DTMs from large language models (LLMs). We also show that the proposed measure correlates well with human judgment. Our findings may help in identifying changing topics, evaluating different DTMs and LLMs, and guiding future research in this area.