Chenyang Guo
2020
FPAI at SemEval-2020 Task 10: A Query Enhanced Model with RoBERTa for Emphasis Selection
Chenyang Guo
|
Xiaolong Hou
|
Junsong Ren
|
Lianxin Jiang
|
Yang Mo
|
Haiqin Yang
|
Jianping Shen
Proceedings of the Fourteenth Workshop on Semantic Evaluation
This paper describes the model we apply in the SemEval-2020 Task 10. We formalize the task of emphasis selection as a simplified query-based machine reading comprehension (MRC) task, i.e. answering a fixed question of “Find candidates for emphasis”. We propose our subword puzzle encoding mechanism and subword fusion layer to align and fuse subwords. By introducing the semantic prior knowledge of the informative query and some other techniques, we attain the 7th place during the evaluation phase and the first place during train phase.
Search
Fix data
Co-authors
- Xiaolong Hou 1
- Lianxin Jiang 1
- Yang Mo 1
- Junsong Ren 1
- Jianping Shen 1
- show all...