Chi Ma


2024

pdf bib
RENN: A Rule Embedding Enhanced Neural Network Framework for Temporal Knowledge Graph Completion
Linlin Zong | Zhenrong Xie | Chi Ma | Xinyue Liu | Xianchao Zhang | Bo Xu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Temporal knowledge graph completion is a critical task within the knowledge graph domain. Existing approaches encompass deep neural network-based methods for temporal knowledge graph embedding and rule-based logical symbolic reasoning. However, the former may not adequately account for structural dependencies between relations.Conversely, the latter methods relies heavily on strict logical rule reasoning and lacks robustness in the face of fuzzy or noisy data. In response to these challenges, we present RENN, a groundbreaking framework that enhances temporal knowledge graph completion through rule embedding. RENN employs a three-step approach. First, it utilizes temporary random walk to extract temporal logic rules. Then, it pre-trains by learning embeddings for each logical rule and its associated relations, thereby enhancing the likelihood of existing quadruples and logical rules. Finally, it incorporates the embeddings of logical rules into the deep neural network. Our methodology has been validated through experiments conducted on various temporal knowledge graph models and datasets, consistently demonstrating its effectiveness and potential in improving temporal knowledge graph completion.

pdf bib
Temporal Knowledge Graph Reasoning with Dynamic Hypergraph Embedding
Xinyue Liu | Jianan Zhang | Chi Ma | Wenxin Liang | Bo Xu | Linlin Zong
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Reasoning over the Temporal Knowledge Graph (TKG) that predicts facts in the future has received much attention. Most previous works attempt to model temporal dynamics with knowledge graphs and graph convolution networks. However, these methods lack the consideration of high-order interactions between objects in TKG, which is an important factor to predict future facts. To address this problem, we introduce dynamic hypergraph embedding for temporal knowledge graph reasoning. Specifically, we obtain high-order interactions by constructing hypergraphs based on temporal knowledge graphs at different timestamps. Besides, we integrate the differences caused by time into the hypergraph representation in order to fit TKG. Then, we adapt dynamic meta-embedding for temporal hypergraph representation that allows our model to choose the appropriate high-order interactions for downstream reasoning. Experimental results on public TKG datasets show that our method outperforms the baselines. Furthermore, the analysis part demonstrates that the proposed method brings good interpretation for the predicted results.