Recent psycholinguistic research has compared human reading times to surprisal estimates from language models to study the factors shaping human sentence processing difficulty. Previous studies have shown a strong fit between surprisal values from Transformers and reading times. However, standard Transformers work with a lossless representation of the entire previous linguistic context, unlike models of human language processing that include memory decay. To bridge this gap, this paper evaluates a modification of the Transformer model that uses ALiBi (Press et al., 2022), a recency bias added to attention scores. Surprisal estimates from a Transformer that includes ALiBi during training and inference show an improved fit to human reading times compared to a standard Transformer baseline. A subsequent analysis of attention heads suggests that ALiBi’s mixture of slopes—which determine the rate of memory decay in each attention head—may play a role in the improvement by helping models with ALiBi to track different kinds of linguistic dependencies.
Grammar induction, the task of learning a set of syntactic rules from minimally annotated training data, provides a means of exploring the longstanding question of whether humans rely on innate knowledge to acquire language. Of the various formalisms available for grammar induction, categorial grammars provide an appealing option due to their transparent interface between syntax and semantics. However, to obtain competitive results, previous categorial grammar inducers have relied on shortcuts such as part-of-speech annotations or an ad hoc bias term in the objective function to ensure desirable branching behavior. We present a categorial grammar inducer that eliminates both shortcuts: it learns from raw data, and does not rely on a biased objective function. This improvement is achieved through a novel stochastic process used to select the set of available syntactic categories. On a corpus of English child-directed speech, the model attains a recall-homogeneity of 0.48, a large improvement over previous categorial grammar inducers.
Grammar induction, the task of learning a set of grammatical rules from raw or minimally labeled text data, can provide clues about what kinds of syntactic structures are learnable without prior knowledge. Recent work (e.g., Kim et al., 2019; Zhu et al., 2020; Jin et al., 2021a) has achieved advances in unsupervised induction of probabilistic context-free grammars (PCFGs). However, categorial grammar induction has received less recent attention, despite allowing inducers to support a larger set of syntactic categories—due to restrictions on how categories can combine—and providing a transparent interface with compositional semantics, opening up possibilities for models that jointly learn form and meaning. Motivated by this, we propose a new model for inducing a basic (Ajdukiewicz, 1935; Bar-Hillel, 1953) categorial grammar. In contrast to earlier categorial grammar induction systems (e.g., Bisk and Hockenmaier, 2012), our model learns from raw data without any part-of-speech information. Experiments on child-directed speech show that our model attains a recall-homogeneity of 0.33 on average, which dramatically increases to 0.59 when a bias toward forward function application is added to the model.
While the use of character models has been popular in NLP applications, it has not been explored much in the context of psycholinguistic modeling. This paper presents a character model that can be applied to a structural parser-based processing model to calculate word generation probabilities. Experimental results show that surprisal estimates from a structural processing model using this character model deliver substantially better fits to self-paced reading, eye-tracking, and fMRI data than those from large-scale language models trained on much more data. This may suggest that the proposed processing model provides a more humanlike account of sentence processing, which assumes a larger role of morphology, phonotactics, and orthographic complexity than was previously thought.