Current NLP models appear to be achieving performance comparable to human capabilities on well-established benchmarks. New benchmarks are now necessary to test deeper layers of understanding of natural languages by these models. Blackbird’s Language Matrices are a recently developed framework that draws inspiration from tests of human analytic intelligence. The BLM task has revealed that successful performances in previously studied linguistic problems do not yet stem from a deep understanding of the generative factors that define these problems. In this study, we define a new BLM task for predicate-argument structure, and develop a structured dataset for its investigation, concentrating on the spray-load verb alternations in English, as a case study. The context sentences include one alternant from the spray-load alternation and the target sentence is the other alternant, to be chosen among a minimally contrastive and adversarial set of answers. We describe the generation process of the dataset and the reasoning behind the generating rules. The dataset aims to facilitate investigations into how verb information is encoded in sentence embeddings and how models generalize to the complex properties of argument structures. Benchmarking experiments conducted on the dataset and qualitative error analysis on the answer set reveal the inherent challenges associated with the problem even for current high-performing representations.
Successful machine learning systems currently rely on massive amounts of data, which are very effective in hiding some of the shallowness of the learned models. To help train models with more complex and compositional skills, we need challenging data, on which a system is successful only if it detects structure and regularities, that will allow it to generalize. In this paper, we describe a French dataset (BLM-AgrF) for learning the underlying rules of subject-verb agreement in sentences, developed in the BLM framework, a new task inspired by visual IQ tests known as Raven’s Progressive Matrices. In this task, an instance consists of sequences of sentences with specific attributes. To predict the correct answer as the next element of the sequence, a model must correctly detect the generative model used to produce the dataset. We provide details and share a dataset built following this methodology. Two exploratory baselines based on commonly used architectures show that despite the simplicity of the phenomenon, it is a complex problem for deep learning systems.
Multi-hop reasoning, a prevalent approach for query answering, aims at inferring new facts along reasonable paths over a knowledge graph. Reinforcement learning methods can be adopted by formulating the problem into a Markov decision process. However, common suffering within RL-based reasoning models is that the agent can be biased to spurious paths which coincidentally lead to the correct answer with poor explanation. In this work, we take a deep dive into this phenomenon and define a metric named Path Spuriousness (PS), to quantitatively estimate to what extent a path is spurious. Guided by the definition of PS, we design a model with a new reward that considers both answer accuracy and path reasonableness. We test our method on four datasets and experiments reveal that our method considerably enhances the agent’s capacity to prevent spurious paths while keeping comparable to state-of-the-art performance.
To develop a system with near-human language capabilities, we need to understand current systems’ generalisation and compositional abilities. We approach this by generating compositional, structured data, inspired from visual intelligence tests, that depend on the problem-solvers being able to disentangle objects and their absolute and relative properties in a sequence of images. We design an analogous task and develop the corresponding datasets that capture specific linguistic phenomena and their properties. Solving each problem instance depends on detecting the relevant linguistic objects and generative rules of the problem. We propose two datasets modelling two linguistic phenomena – subject-verb agreement in French, and verb alternations in English. The datasets can be used to investigate how LLMs encode linguistic objects, such as phrases, their grammatical and semantic properties, such as number or semantic role, and how such information is combined to correctly solve each problem. Specifically generated error types help investigate the behaviour of the system, which important information it is able to detect, and which structures mislead it.