We present the results of the ninth edition of the Biomedical Translation Task at WMT’24. We released test sets for six language pairs, namely, French, German, Italian, Portuguese, Russian, and Spanish, from and into English. Eachtest set consists of 50 abstracts from PubMed. Differently from previous years, we did not split abstracts into sentences. We received submissions from five teams, and for almost all language directions. We used a baseline/comparison system based on Llama 3.1 and share the source code at https://github.com/cgrozea/wmt24biomed-ref.
We present an overview of the Biomedical Translation Task that was part of the Eighth Conference on Machine Translation (WMT23). The aim of the task was the automatic translation of biomedical abstracts from the PubMed database. It included twelve language directions, namely, French, Spanish, Portuguese, Italian, German, and Russian, from and into English. We received submissions from 18 systems and for all the test sets that we released. Our comparison system was based on ChatGPT 3.5 and performed very well in comparison to many of the submissions.
In the seventh edition of the WMT Biomedical Task, we addressed a total of seven languagepairs, namely English/German, English/French, English/Spanish, English/Portuguese, English/Chinese, English/Russian, English/Italian. This year’s test sets covered three types of biomedical text genre. In addition to scientific abstracts and terminology items used in previous editions, we released test sets of clinical cases. The evaluation of clinical cases translations were given special attention by involving clinicians in the preparation of reference translations and manual evaluation. For the main MEDLINE test sets, we received a total of 609 submissions from 37 teams. For the ClinSpEn sub-task, we had the participation of five teams.
In the sixth edition of the WMT Biomedical Task, we addressed a total of eight language pairs, namely English/German, English/French, English/Spanish, English/Portuguese, English/Chinese, English/Russian, English/Italian, and English/Basque. Further, our tests were composed of three types of textual test sets. New to this year, we released a test set of summaries of animal experiments, in addition to the test sets of scientific abstracts and terminologies. We received a total of 107 submissions from 15 teams from 6 countries.
Machine translation of scientific abstracts and terminologies has the potential to support health professionals and biomedical researchers in some of their activities. In the fifth edition of the WMT Biomedical Task, we addressed a total of eight language pairs. Five language pairs were previously addressed in past editions of the shared task, namely, English/German, English/French, English/Spanish, English/Portuguese, and English/Chinese. Three additional languages pairs were also introduced this year: English/Russian, English/Italian, and English/Basque. The task addressed the evaluation of both scientific abstracts (all language pairs) and terminologies (English/Basque only). We received submissions from a total of 20 teams. For recurring language pairs, we observed an improvement in the translations in terms of automatic scores and qualitative evaluations, compared to previous years.
This paper describes the systems of Fraunhofer FOKUS for the WMT 2019 machine translation robustness task. We have made submissions to the EN-FR, FR-EN, and JA-EN language pairs. The first two were made with a baseline translator, trained on clean data for the WMT 2019 biomedical translation task. These baselines improved over the baselines from the MTNT paper by 2 to 4 BLEU points, but where not trained on the same data. The last one used the same model class and training procedure, with induced typos in the training data to increase the model robustness.
In the fourth edition of the WMT Biomedical Translation task, we considered a total of six languages, namely Chinese (zh), English (en), French (fr), German (de), Portuguese (pt), and Spanish (es). We performed an evaluation of automatic translations for a total of 10 language directions, namely, zh/en, en/zh, fr/en, en/fr, de/en, en/de, pt/en, en/pt, es/en, and en/es. We provided training data based on MEDLINE abstracts for eight of the 10 language pairs and test sets for all of them. In addition to that, we offered a new sub-task for the translation of terms in biomedical terminologies for the en/es language direction. Higher BLEU scores (close to 0.5) were obtained for the es/en, en/es and en/pt test sets, as well as for the terminology sub-task. After manual validation of the primary runs, some submissions were judged to be better than the reference translations, for instance, for de/en, en/es and es/en.
Machine translation enables the automatic translation of textual documents between languages and can facilitate access to information only available in a given language for non-speakers of this language, e.g. research results presented in scientific publications. In this paper, we provide an overview of the Biomedical Translation shared task in the Workshop on Machine Translation (WMT) 2018, which specifically examined the performance of machine translation systems for biomedical texts. This year, we provided test sets of scientific publications from two sources (EDP and Medline) and for six language pairs (English with each of Chinese, French, German, Portuguese, Romanian and Spanish). We describe the development of the various test sets, the submissions that we received and the evaluations that we carried out. We obtained a total of 39 runs from six teams and some of this year’s BLEU scores were somewhat higher that last year’s, especially for teams that made use of biomedical resources or state-of-the-art MT algorithms (e.g. Transformer). Finally, our manual evaluation scored automatic translations higher than the reference translations for German and Spanish.
This paper describes the system of Fraunhofer FOKUS for the WMT 2018 biomedical translation task. Our approach, described here, was to automatically select the most promising translation from a set of candidates produced with NMT (Transformer) models. We selected the highest fidelity translation of each sentence by using a dictionary, stemming and a set of heuristics. Our method is simple, can use any machine translators, and requires no further training in addition to that already employed to build the NMT models. The downside is that the score did not increase over the best in ensemble, but was quite close to it (difference about 0.5 BLEU).