Cuong Hoang
2023
Improving Retrieval Augmented Neural Machine Translation by Controlling Source and Fuzzy-Match Interactions
Cuong Hoang
|
Devendra Sachan
|
Prashant Mathur
|
Brian Thompson
|
Marcello Federico
Findings of the Association for Computational Linguistics: EACL 2023
We explore zero-shot adaptation, where a general-domain model has access to customer or domain specific parallel data at inference time, but not during training. We build on the idea of Retrieval Augmented Translation (RAT) where top-k in-domain fuzzy matches are found for the source sentence, and target-language translations of those fuzzy-matched sentences are provided to the translation model at inference time. We propose a novel architecture to control interactions between a source sentence and the top-k fuzzy target-language matches, and compare it to architectures from prior work. We conduct experiments in two language pairs (En-De and En-Fr) by training models on WMT data and testing them with five and seven multi-domain datasets, respectively. Our approach consistently outperforms the alternative architectures, improving BLEU across language pair, domain, and number k of fuzzy matches.
2021
Towards Modeling the Style of Translators in Neural Machine Translation
Yue Wang
|
Cuong Hoang
|
Marcello Federico
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
One key ingredient of neural machine translation is the use of large datasets from different domains and resources (e.g. Europarl, TED talks). These datasets contain documents translated by professional translators using different but consistent translation styles. Despite that, the model is usually trained in a way that neither explicitly captures the variety of translation styles present in the data nor translates new data in different and controllable styles. In this work, we investigate methods to augment the state of the art Transformer model with translator information that is available in part of the training data. We show that our style-augmented translation models are able to capture the style variations of translators and to generate translations with different styles on new data. Indeed, the generated variations differ significantly, up to +4.5 BLEU score difference. Despite that, human evaluation confirms that the translations are of the same quality.