Dang Nguyen


2024

pdf bib
Multi-Objective Linguistic Control of Large Language Models
Dang Nguyen | Jiuhai Chen | Tianyi Zhou
Findings of the Association for Computational Linguistics: ACL 2024

Large language models (LLMs), despite their breakthroughs on many challenging benchmark tasks, prefer to generate verbose responses and lack the controllability of output complexity, which is usually preferred by human users in practice. In this paper, we study how to precisely control multiple linguistic complexities of LLM output by finetuning using off-the-shelf data. To this end, we propose multi-control tuning (MCTune), which includes multiple linguistic complexity values of ground-truth responses as controls in the input for instruction tuning. We finetune LLaMA2-7B on Alpaca-GPT4 and WizardLM datasets. Evaluations on widely used benchmarks demonstrate that our method does not only improve LLMs’ multi-complexity controllability substantially but also retains or even enhances the quality of the responses as a side benefit.

2022

pdf bib
DANGNT-SGU at SemEval-2022 Task 11: Using Pre-trained Language Model for Complex Named Entity Recognition
Dang Nguyen | Huy Khac Nguyen Huynh
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

In this paper, we describe a system that we built to participate in the SemEval 2022 Task 11: MultiCoNER Multilingual Complex Named Entity Recognition, specifically the track Mono-lingual in English. To construct this system, we used Pre-trained Language Models (PLMs). Especially, the Pre-trained Model base on BERT is applied for the task of recognizing named entities by fine-tuning method. We performed the evaluation on two test datasets of the shared task: the Practice Phase and the Evaluation Phase of the competition.

2017

pdf bib
UIT-DANGNT-CLNLP at SemEval-2017 Task 9: Building Scientific Concept Fixing Patterns for Improving CAMR
Khoa Nguyen | Dang Nguyen
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

This paper describes the improvements that we have applied on CAMR baseline parser (Wang et al., 2016) at Task 8 of SemEval-2016. Our objective is to increase the performance of CAMR when parsing sentences from scientific articles, especially articles of biology domain more accurately. To achieve this goal, we built two wrapper layers for CAMR. The first layer, which covers the input data, will normalize, add necessary information to the input sentences to make the input dependency parser and the aligner better handle reference citations, scientific figures, formulas, etc. The second layer, which covers the output data, will modify and standardize output data based on a list of scientific concept fixing patterns. This will help CAMR better handle biological concepts which are not in the training dataset. Finally, after applying our approach, CAMR has scored 0.65 F-score on the test set of Biomedical training data and 0.61 F-score on the official blind test dataset.