This paper surveys 60 English Machine Reading Comprehension datasets, with a view to providing a convenient resource for other researchers interested in this problem. We categorize the datasets according to their question and answer form and compare them across various dimensions including size, vocabulary, data source, method of creation, human performance level, and first question word. Our analysis reveals that Wikipedia is by far the most common data source and that there is a relative lack of why, when, and where questions across datasets.
In this paper we explore the problem of machine reading comprehension, focusing on the BoolQ dataset of Yes/No questions. We carry out an error analysis of a BERT-based machine reading comprehension model on this dataset, revealing issues such as unstable model behaviour and some noise within the dataset itself. We then experiment with two approaches for integrating information from knowledge graphs: (i) concatenating knowledge graph triples to text passages and (ii) encoding knowledge with a Graph Neural Network. Neither of these approaches show a clear improvement and we hypothesize that this may be due to a combination of inaccuracies in the knowledge graph, imprecision in entity linking, and the models’ inability to capture additional information from knowledge graphs.
We describe work from our investigations of the novel area of multi-modal cross-lingual retrieval (MMCLIR) under low-resource conditions. We study the challenges associated with MMCLIR relating to: (i) data conversion between different modalities, for example speech and text, (ii) overcoming the language barrier between source and target languages; (iii) effectively scoring and ranking documents to suit the retrieval task; and (iv) handling low resource constraints that prohibit development of heavily tuned machine translation (MT) and automatic speech recognition (ASR) systems. We focus on the use case of retrieving text and speech documents in Swahili, using English queries which was the main focus of the OpenCLIR shared task. Our work is developed within the scope of this task. In this paper we devote special attention to the automatic translation (AT) component which is crucial for the overall quality of the MMCLIR system. We exploit a combination of dictionaries and phrase-based statistical machine translation (MT) systems to tackle effectively the subtask of query translation. We address each MMCLIR challenge individually, and develop separate components for automatic translation (AT), speech processing (SP) and information retrieval (IR). We find that results with respect to cross-lingual text retrieval are quite good relative to the task of cross-lingual speech retrieval. Overall we find that the task of MMCLIR and specifically cross-lingual speech retrieval is quite complex. Further we pinpoint open issues related to handling cross-lingual audio and text retrieval for low resource languages that need to be addressed in future research.
It has become commonplace for people to share their opinions about all kinds of products by posting reviews online. It has also become commonplace for potential customers to do research about the quality and limitations of these products by posting questions online. We test the extent to which reviews are useful in question-answering by combining two Amazon datasets and focusing our attention on yes/no questions. A manual analysis of 400 cases reveals that the reviews directly contain the answer to the question just over a third of the time. Preliminary reading comprehension experiments with this dataset prove inconclusive, with accuracy in the range 50-66%.
We describe the work of a team from the ADAPT Centre in Ireland in addressing automatic answer selection for the Multi-choice Question Answering in Examinations shared task. The system is based on a logistic regression over the string similarities between question, answer, and additional text. We obtain the highest grade out of six systems: 48.7% accuracy on a validation set (vs. a baseline of 29.45%) and 45.6% on a test set.
We show that a neural approach to the task of non-factoid answer reranking can benefit from the inclusion of tried-and-tested handcrafted features. We present a neural network architecture based on a combination of recurrent neural networks that are used to encode questions and answers, and a multilayer perceptron. We show how this approach can be combined with additional features, in particular, the discourse features used by previous research. Our neural approach achieves state-of-the-art performance on a public dataset from Yahoo! Answers and its performance is further improved by incorporating the discourse features. Additionally, we present a new dataset of Ask Ubuntu questions where the hybrid approach also achieves good results.