Large Language Models (LLMs) perform outstandingly in various downstream tasks, and the use of the Retrieval-Augmented Generation (RAG) architecture has been shown to improve performance for legal question answering (Nuruzzaman and Hussain, 2020; Louis et al., 2024). However, there are limited applications in insurance questions-answering, a specific type of legal document. This paper introduces two corpora: the Quebec Automobile Insurance Expertise Reference Corpus and a set of 82 Expert Answers to Layperson Automobile Insurance Questions. Our study leverages both corpora to automatically and manually assess a GPT4-o, a state-of-the-art (SOTA) LLM, to answer Quebec automobile insurance questions. Our results demonstrate that, on average, using our expertise reference corpus generates better responses on both automatic and manual evaluation metrics. However, they also highlight that LLM QA is unreliable enough for mass utilization in critical areas. Indeed, our results show that between 5% to 13% of answered questions include a false statement that could lead to customer misunderstanding.
Segmenting an address into meaningful components, also known as address parsing, is an essential step in many applications from record linkage to geocoding and package delivery. Consequently, a lot of work has been dedicated to develop accurate address parsing techniques, with machine learning and neural network methods leading the state-of-the-art scoreboard. However, most of the work on address parsing has been confined to academic endeavours with little availability of free and easy-to-use open-source solutions.This paper presents Deepparse, a Python open-source, extendable, fine-tunable address parsing solution under LGPL-3.0 licence to parse multinational addresses using state-of-the-art deep learning algorithms and evaluated on over 60 countries. It can parse addresses written in any language and use any address standard. The pre-trained model achieves average 99% parsing accuracies on the countries used for training with no pre-processing nor post-processing needed. Moreover, the library supports fine-tuning with new data to generate a custom address parser.
In this paper, we reproduce the experiments of Artetxe et al. (2018b) regarding the robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings. We show that the reproduction of their method is indeed feasible with some minor assumptions. We further investigate the robustness of their model by introducing four new languages that are less similar to English than the ones proposed by the original paper. In order to assess the stability of their model, we also conduct a grid search over sensible hyperparameters. We then propose key recommendations that apply to any research project in order to deliver fully reproducible research.
Plumitifs (dockets) were initially a tool for law clerks. Nowadays, they are used as summaries presenting all the steps of a judicial case. Information concerning parties’ identity, jurisdiction in charge of administering the case, and some information relating to the nature and the course of the preceding are available through plumitifs. They are publicly accessible but barely understandable; they are written using abbreviations and referring to provisions from the Criminal Code of Canada, which makes them hard to reason about. In this paper, we propose a simple yet efficient multi-source language generation architecture that leverages both the plumitif and the Criminal Code’s content to generate intelligible plumitifs descriptions. It goes without saying that ethical considerations rise with these sensitive documents made readable and available at scale, legitimate concerns that we address in this paper. This is, to the best of our knowledge, the first application of plumitifs descriptions generation made available for French speakers along with an ethical discussion about the topic.