Diana Nicoleta Popa

Also published as: Diana Popa


2025

pdf bib
“Stupid robot, I want to speak to a human!” User Frustration Detection in Task-Oriented Dialog Systems
Mireia Hernandez Caralt | Ivan Sekulic | Filip Carevic | Nghia Khau | Diana Nicoleta Popa | Bruna Guedes | Victor Guimaraes | Zeyu Yang | Andre Manso | Meghana Reddy | Paolo Rosso | Roland Mathis
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track

Detecting user frustration in modern-day task-oriented dialog (TOD) systems is imperative for maintaining overall user satisfaction, engagement, and retention. However, most recent research is focused on sentiment and emotion detection in academic settings, thus failing to fully encapsulate implications of real-world user data. To mitigate this gap, in this work, we focus on user frustration in a deployed TOD system, assessing the feasibility of out-of-the-box solutions for user frustration detection. Specifically, we compare the performance of our deployed keyword-based approach, open-source approaches to sentiment analysis, dialog breakdown detection methods, and emerging in-context learning LLM-based detection. Our analysis highlights the limitations of open-source methods for real-world frustration detection, while demonstrating the superior performance of the LLM-based approach, achieving a 16% relative improvement in F1 score on an internal benchmark. Finally, we analyze advantages and limitations of our methods and provide an insight into user frustration detection task for industry practitioners.

2023

pdf bib
The Power of Selecting Key Blocks with Local Pre-ranking for Long Document Information Retrieval
Minghan Li | Diana Nicoleta Popa | Johan Chagnon | Yagmur Gizem Cinar | Eric Gaussier
Actes de CORIA-TALN 2023. Actes de la 18e Conférence en Recherche d'Information et Applications (CORIA)

Les réseaux neuronaux profonds et les modèles fondés sur les transformeurs comme BERT ont envahi le domaine de la recherche d’informations (RI) ces dernières années. Leur succès est lié au mécanisme d’auto-attention qui permet de capturer les dépendances entre les mots indépendamment de leur distance. Cependant, en raison de sa complexité quadratique dans le nombre de mots, ce mécanisme ne peut être directement utilisé sur de longues séquences, ce qui ne permet pas de déployer entièrement les modèles neuronaux sur des documents longs pouvant contenir des milliers de mots. Trois stratégies standard ont été adoptées pour contourner ce problème. La première consiste à tronquer les documents longs, la deuxième à segmenter les documents longs en passages plus courts et la dernière à remplacer le module d’auto-attention par des modules d’attention parcimonieux. Dans le premier cas, des informations importantes peuvent être perdues et le jugement de pertinence n’est fondé que sur une partie de l’information contenue dans le document. Dans le deuxième cas, une architecture hiérarchique peut être adoptée pour construire une représentation du document sur la base des représentations de chaque passage. Cela dit, malgré ses résultats prometteurs, cette stratégie reste coûteuse en temps, en mémoire et en énergie. Dans le troisième cas, les contraintes de parcimonie peuvent conduire à manquer des dépendances importantes et, in fine, à des résultats sous-optimaux. L’approche que nous proposons est légèrement différente de ces stratégies et vise à capturer, dans les documents longs, les blocs les plus importants permettant de décider du statut, pertinent ou non, de l’ensemble du document. Elle repose sur trois étapes principales : (a) la sélection de blocs clés (c’est-à-dire susceptibles d’être pertinents) avec un pré-classement local en utilisant soit des modèles de RI classiques, soit un module d’apprentissage, (b) l’apprentissage d’une représentation conjointe des requêtes et des blocs clés à l’aide d’un modèle BERT standard, et (c) le calcul d’un score de pertinence final qui peut être considéré comme une agrégation d’informations de pertinence locale. Dans cet article, nous menons tout d’abord une analyse qui révèle que les signaux de pertinence peuvent apparaître à différents endroits dans les documents et que de tels signaux sont mieux capturés par des relations sémantiques que par des correspondances exactes. Nous examinons ensuite plusieurs méthodes pour sélectionner les blocs pertinents et montrons comment intégrer ces méthodes dans les modèles récents de RI.

2021

pdf bib
Contribution d’informations syntaxiques aux capacités de généralisation compositionelle des modèles seq2seq convolutifs (Assessing the Contribution of Syntactic Information for Compositional Generalization of seq2seq Convolutional Networks)
Diana Nicoleta Popa | William N. Havard | Maximin Coavoux | Eric Gaussier | Laurent Besacier
Actes de la 28e Conférence sur le Traitement Automatique des Langues Naturelles. Volume 1 : conférence principale

Les modèles neuronaux de type seq2seq manifestent d’étonnantes capacités de prédiction quand ils sont entraînés sur des données de taille suffisante. Cependant, ils échouent à généraliser de manière satisfaisante quand la tâche implique d’apprendre et de réutiliser des règles systématiques de composition et non d’apprendre simplement par imitation des exemples d’entraînement. Le jeu de données SCAN, constitué d’un ensemble de commandes en langage naturel associées à des séquences d’action, a été spécifiquement conçu pour évaluer les capacités des réseaux de neurones à apprendre ce type de généralisation compositionnelle. Dans cet article, nous nous proposons d’étudier la contribution d’informations syntaxiques sur les capacités de généralisation compositionnelle des réseaux de neurones seq2seq convolutifs.

2016

pdf bib
A Vector Space for Distributional Semantics for Entailment
James Henderson | Diana Popa
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2015

pdf bib
Un système hybride pour l’analyse de sentiments associés aux aspects
Caroline Brun | Diana Nicoleta Popa | Claude Roux
Actes de la 22e conférence sur le Traitement Automatique des Langues Naturelles. Articles courts

Cet article présente en détails notre participation à la tâche 4 de SemEval2014 (Analyse de Sentiments associés aux Aspects). Nous présentons la tâche et décrivons précisément notre système qui consiste en une combinaison de composants linguistiques et de modules de classification. Nous exposons ensuite les résultats de son évaluation, ainsi que les résultats des meilleurs systèmes. Nous concluons par la présentation de quelques nouvelles expériences réalisées en vue de l’amélioration de ce système.

2014

pdf bib
XRCE: Hybrid Classification for Aspect-based Sentiment Analysis
Caroline Brun | Diana Nicoleta Popa | Claude Roux
Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014)