Dominik Wagner
2024
Optimized Speculative Sampling for GPU Hardware Accelerators
Dominik Wagner
|
Seanie Lee
|
Ilja Baumann
|
Philipp Seeberger
|
Korbinian Riedhammer
|
Tobias Bocklet
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
In this work, we optimize speculative sampling for parallel hardware accelerators to improve sampling speed. We notice that substantial portions of the intermediate matrices necessary for speculative sampling can be computed concurrently. This allows us to distribute the workload across multiple GPU threads, enabling simultaneous operations on matrix segments within thread blocks. This results in profiling time improvements ranging from 6% to 13% relative to the baseline implementation, without compromising accuracy. To further accelerate speculative sampling, probability distributions parameterized by softmax are approximated by sigmoid. This approximation approach results in significantly greater relative improvements in profiling time, ranging from 37% to 94%, with a minor decline in accuracy. We conduct extensive experiments on both automatic speech recognition and summarization tasks to validate the effectiveness of our optimization methods.
MMUTF: Multimodal Multimedia Event Argument Extraction with Unified Template Filling
Philipp Seeberger
|
Dominik Wagner
|
Korbinian Riedhammer
Findings of the Association for Computational Linguistics: EMNLP 2024
With the advancement of multimedia technologies, news documents and user-generated content are often represented as multiple modalities, making Multimedia Event Extraction (MEE) an increasingly important challenge. However, recent MEE methods employ weak alignment strategies and data augmentation with simple classification models, which ignore the capabilities of natural language-formulated event templates for the challenging Event Argument Extraction (EAE) task. In this work, we focus on EAE and address this issue by introducing a unified template filling model that connects the textual and visual modalities via textual prompts. This approach enables the exploitation of cross-ontology transfer and the incorporation of event-specific semantics. Experiments on the M2E2 benchmark demonstrate the effectiveness of our approach. Our system surpasses the current SOTA on textual EAE by +7% F1, and performs generally better than the second-best systems for multimedia EAE.