Du Hui Lee


2024

pdf bib
SignBLEU: Automatic Evaluation of Multi-channel Sign Language Translation
Jung-Ho Kim | Mathew Huerta-Enochian | Changyong Ko | Du Hui Lee
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Sign languages are multi-channel languages that communicate information through not just the hands (manual signals) but also facial expressions and upper body movements (non-manual signals). However, since automatic sign language translation is usually performed by generating a single sequence of glosses, researchers eschew non-manual and co-occurring manual signals in favor of a simplified list of manual glosses. This can lead to significant information loss and ambiguity. In this paper, we introduce a new task named multi-channel sign language translation (MCSLT) and present a novel metric, SignBLEU, designed to capture multiple signal channels. We validated SignBLEU on a system-level task using three sign language corpora with varied linguistic structures and transcription methodologies and examined its correlation with human judgment through two segment-level tasks. We found that SignBLEU consistently correlates better with human judgment than competing metrics. To facilitate further MCSLT research, we report benchmark scores for the three sign language corpora and release the source code for SignBLEU at https://github.com/eq4all-projects/SignBLEU.

2022

pdf bib
KoSign Sign Language Translation Project: Introducing The NIASL2021 Dataset
Mathew Huerta-Enochian | Du Hui Lee | Hye Jin Myung | Kang Suk Byun | Jun Woo Lee
Proceedings of the 7th International Workshop on Sign Language Translation and Avatar Technology: The Junction of the Visual and the Textual: Challenges and Perspectives

We introduce a new sign language production (SLP) and sign language translation (SLT) dataset, NIASL2021, consisting of 201,026 Korean-KSL data pairs. KSL translations of Korean source texts are represented in three formats: video recordings, keypoint position data, and time-aligned gloss annotations for each hand (using a 7,989 sign vocabulary) and for eight different non-manual signals (NMS). We evaluated our sign language elicitation methodology and found that text-based prompting had a negative effect on translation quality in terms of naturalness and comprehension. We recommend distilling text into a visual medium before translating into sign language or adding a prompt-blind review step to text-based translation methodologies.

pdf bib
Sign Language Production With Avatar Layering: A Critical Use Case over Rare Words
Jung-Ho Kim | Eui Jun Hwang | Sukmin Cho | Du Hui Lee | Jong Park
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Sign language production (SLP) is the process of generating sign language videos from spoken language expressions. Since sign languages are highly under-resourced, existing vision-based SLP approaches suffer from out-of-vocabulary (OOV) and test-time generalization problems and thus generate low-quality translations. To address these problems, we introduce an avatar-based SLP system composed of a sign language translation (SLT) model and an avatar animation generation module. Our Transformer-based SLT model utilizes two additional strategies to resolve these problems: named entity transformation to reduce OOV tokens and context vector generation using a pretrained language model (e.g., BERT) to reliably train the decoder. Our system is validated on a new Korean-Korean Sign Language (KSL) dataset of weather forecasts and emergency announcements. Our SLT model achieves an 8.77 higher BLEU-4 score and a 4.57 higher ROUGE-L score over those of our baseline model. In a user evaluation, 93.48% of named entities were successfully identified by participants, demonstrating marked improvement on OOV issues.