2019
pdf
bib
abs
Détecter la non-adhérence médicamenteuse dans les forums de discussion avec les méthodes de recherche d’information (Detect drug non-compliance in Internet fora using Information Retrieval methods )
Elise Bigeard
|
Natalia Grabar
Actes de la Conférence sur le Traitement Automatique des Langues Naturelles (TALN) PFIA 2019. Volume II : Articles courts
Les méthodes de recherche d’information permettent d’explorer les données textuelles. Nous les exploitons pour la détection de messages avec la non-adhérence médicamenteuse dans les forums de discussion. La non-adhérence médicamenteuse correspond aux cas lorsqu’un patient ne respecte pas les indications de son médecin et modifie les prises de médicaments (augmente ou diminue les doses, par exemple). Le moteur de recherche exploité montre 0,9 de précision sur les 10 premiers résultats avec un corpus équilibré, et 0,4 avec un corpus respectant la distribution naturelle des messages, qui est très déséquilibrée en défaveur de la catégorie recherchée. La précision diminue avec l’augmentation du nombre de résultats considérés alors que le rappel augmente. Nous exploitons également le moteur de recherche sur de nouvelles données et avec des types précis de non-adhérence.
2018
pdf
bib
abs
Détection de mésusages de médicaments dans les réseaux sociaux (Detection of drug misuse in social media)
Elise Bigeard
|
Natalia Grabar
|
Frantz Thiessard
Actes de la Conférence TALN. Volume 1 - Articles longs, articles courts de TALN
Un mésusage apparaît lorsqu’un patient ne respecte pas sa prescription et fait des actions pouvant mener à des effets nocifs. Bien que ces situations soient dangereuses, les patients ne signalent généralement pas les mésusages à leurs médecins. Il est donc nécessaire d’étudier d’autres sources d’information pour découvrir ce qui se passe en réalité. Nous proposons d’étudier les forums de santé en ligne. L’objectif de notre travail consiste à explorer les forums de santé avec des méthodes de classification supervisée afin d’identifier les messages contenant un mésusage de médicament. Notre méthode permet de détecter les mésusages avec une F-mesure allant jusqu’à 0,810. Cette méthode peut aider dans la détection de mésusages et la construction d’un corpus exploitable par les experts pour étudier les types de mésusages commis par les patients.
2017
pdf
bib
abs
Construction de lexiques pour l’extraction des mentions de maladies dans les forums de santé (Building lexica for extraction of mentions of diseases from healthcare fora)
Elise Bigeard
Actes des 24ème Conférence sur le Traitement Automatique des Langues Naturelles. 19es REncontres jeunes Chercheurs en Informatique pour le TAL (RECITAL 2017)
Les forums de discussion et les réseaux sociaux sont des sources potentielles de différents types d’information, qui ne sont en général pas accessibles par ailleurs. Par exemple, dans les forums de santé, il est possible de trouver les informations sur les habitudes et le mode de vie des personnes. Ces informations sont rarement partagées avec les médecins. Il est donc possible de se fonder sur ces informations pour évaluer les pratiques réelles des patients. Il s’agit cependant d’une source d’information difficile à traiter, essentiellement à cause des spécificités linguistiques qu’elle présente. Si une première étape pour l’exploration des forums consiste à indexer les termes médicaux présents dans les messages avec des concepts issus de terminologies médicales, cela s’avère extrêmement compliqué car les formulations des patients sont très différentes des terminologies officielles. Nous proposons une méthode permettant de créer et enrichir des lexiques de termes et expressions désignant une maladie ou un trouble, avec un intérêt particulier pour les troubles de l’humeur. Nous utilisons des ressources existantes ainsi que des méthodes non supervisées. Les ressources construites dans le cadre du travail nous permettent d’améliorer la détection de messages pertinents.