Emad Kebriaei


2021

pdf bib
UTNLP at SemEval-2021 Task 5: A Comparative Analysis of Toxic Span Detection using Attention-based, Named Entity Recognition, and Ensemble Models
Alireza Salemi | Nazanin Sabri | Emad Kebriaei | Behnam Bahrak | Azadeh Shakery
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

Detecting which parts of a sentence contribute to that sentence’s toxicity—rather than providing a sentence-level verdict of hatefulness— would increase the interpretability of models and allow human moderators to better understand the outputs of the system. This paper presents our team’s, UTNLP, methodology and results in the SemEval-2021 shared task 5 on toxic spans detection. We test multiple models and contextual embeddings and report the best setting out of all. The experiments start with keyword-based models and are followed by attention-based, named entity- based, transformers-based, and ensemble models. Our best approach, an ensemble model, achieves an F1 of 0.684 in the competition’s evaluation phase.

pdf bib
ARMAN: Pre-training with Semantically Selecting and Reordering of Sentences for Persian Abstractive Summarization
Alireza Salemi | Emad Kebriaei | Ghazal Neisi Minaei | Azadeh Shakery
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Abstractive text summarization is one of the areas influenced by the emergence of pre-trained language models. Current pre-training works in abstractive summarization give more points to the summaries with more words in common with the main text and pay less attention to the semantic similarity between generated sentences and the original document. We propose ARMAN, a Transformer-based encoder-decoder model pre-trained with three novel objectives to address this issue. In ARMAN, salient sentences from a document are selected according to a modified semantic score to be masked and form a pseudo summary. To summarize more accurately and similar to human writing patterns, we applied modified sentence reordering. We evaluated our proposed models on six downstream Persian summarization tasks. Experimental results show that our proposed model achieves state-of-the-art performance on all six summarization tasks measured by ROUGE and BERTScore. Our models also outperform prior works in textual entailment, question paraphrasing, and multiple choice question answering. Finally, we established a human evaluation and show that using the semantic score significantly improves summarization results.

2019

pdf bib
Emad at SemEval-2019 Task 6: Offensive Language Identification using Traditional Machine Learning and Deep Learning approaches
Emad Kebriaei | Samaneh Karimi | Nazanin Sabri | Azadeh Shakery
Proceedings of the 13th International Workshop on Semantic Evaluation

In this paper, the used methods and the results obtained by our team, entitled Emad, on the OffensEval 2019 shared task organized at SemEval 2019 are presented. The OffensEval shared task includes three sub-tasks namely Offensive language identification, Automatic categorization of offense types and Offense target identification. We participated in sub-task A and tried various methods including traditional machine learning methods, deep learning methods and also a combination of the first two sets of methods. We also proposed a data augmentation method using word embedding to improve the performance of our methods. The results show that the augmentation approach outperforms other methods in terms of macro-f1.