Enrico Fini
2024
Retrieval-enriched zero-shot image classification in low-resource domains
Nicola Dall’Asen
|
Yiming Wang
|
Enrico Fini
|
Elisa Ricci
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Low-resource domains, characterized by scarce data and annotations, present significant challenges for language and visual understanding tasks, with the latter much under-explored in the literature. Recent advancements in Vision-Language Models (VLM) have shown promising results in high-resource domains but fall short in low-resource concepts that are under-represented (e.g. only a handful of images per category) in the pre-training set. We tackle the challenging task of zero-shot low-resource image classification from a novel perspective. By leveraging a retrieval-based strategy, we achieve this in a training-free fashion. Specifically, our method, named CoRE (Combination of Retrieval Enrichment), enriches the representation of both query images and class prototypes by retrieving relevant textual information from large web-crawled databases. This retrieval-based enrichment significantly boosts classification performance by incorporating the broader contextual information relevant to the specific class. We validate our method on a newly established benchmark covering diverse low-resource domains, including medical imaging, rare plants, and circuits. Our experiments demonstrate that CoRE outperforms existing state-of-the-art methods that rely on synthetic data generation and model fine-tuning.
Continual Contrastive Spoken Language Understanding
Umberto Cappellazzo
|
Enrico Fini
|
Muqiao Yang
|
Daniele Falavigna
|
Alessio Brutti
|
Bhiksha Raj
Findings of the Association for Computational Linguistics: ACL 2024
Recently, neural networks have shown impressive progress across diverse fields, with speech processing being no exception. However, recent breakthroughs in this area require extensive offline training using large datasets and tremendous computing resources. Unfortunately, these models struggle to retain their previously acquired knowledge when learning new tasks continually. In this paper, we investigate the problem of learning sequence-to-sequence models for spoken language understanding in a class-incremental learning (CIL) setting and we propose COCONUT, a CIL method that relies on the combination of experience replay and contrastive learning. Through a modified version of the standard supervised contrastive loss, COCONUT preserves the learned representations by pulling closer samples from the same class and pushing away the others. Moreover, we leverage a multimodal contrastive loss that helps the model learn more discriminative representations of the new data by aligning audio and text features. We also investigate different contrastive designs to combine the strengths of the contrastive loss with teacher-student architectures used for distillation. Experiments on two established SLU datasets reveal the effectiveness of our proposed approach and significant improvements over the baselines. We also show that COCONUT can be combined with methods that operate on the decoder side of the model, resulting in further metrics improvements.
Search
Co-authors
- Nicola Dall’Asen 1
- Yiming Wang 1
- Elisa Ricci 1
- Umberto Cappellazzo 1
- Muqiao Yang 1
- show all...