Esther Goldbraich
2023
Text Augmentation Using Dataset Reconstruction for Low-Resource Classification
Adir Rahamim
|
Guy Uziel
|
Esther Goldbraich
|
Ateret Anaby Tavor
Findings of the Association for Computational Linguistics: ACL 2023
In the deployment of real-world text classification models, label scarcity is a common problem and as the number of classes increases, this problem becomes even more complex. An approach to addressing this problem is by applying text augmentation methods. One of the more prominent methods involves using the text-generation capabilities of language models. In this paper, we propose Text AUgmentation by Dataset Reconstruction (TAU-DR), a novel method of data augmentation for text classification. We conduct experiments on several multi-class datasets, showing that our approach improves the current state-of-the-art techniques for data augmentation.
Unveiling Safety Vulnerabilities of Large Language Models
George Kour
|
Marcel Zalmanovici
|
Naama Zwerdling
|
Esther Goldbraich
|
Ora Fandina
|
Ateret Anaby Tavor
|
Orna Raz
|
Eitan Farchi
Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)
As large language models become more prevalent, their possible harmful or inappropriate responses are a cause for concern. This paper introduces a unique dataset containing adversarial examples in the form of questions, we call AttaQ, designed to provoke such harmful or inappropriate responses. We assess the efficacy of our dataset by analyzing the vulnerabilities of various models when subjected to it. Additionally, we introduce a novel automatic approach for identifying and naming vulnerable semantic regions — input semantic areas for which the model is likely to produce harmful outputs. This is achieved through the application of specialized clustering techniques that consider both the semantic similarity of the input attacks and the harmfulness of the model’s responses.Automatically identifying vulnerable semantic regions enhances the evaluation of model weaknesses, facilitating targeted improvements to its safety mechanisms and overall reliability.
2020
Balancing via Generation for Multi-Class Text Classification Improvement
Naama Tepper
|
Esther Goldbraich
|
Naama Zwerdling
|
George Kour
|
Ateret Anaby Tavor
|
Boaz Carmeli
Findings of the Association for Computational Linguistics: EMNLP 2020
Data balancing is a known technique for improving the performance of classification tasks. In this work we define a novel balancing-viageneration framework termed BalaGen. BalaGen consists of a flexible balancing policy coupled with a text generation mechanism. Combined, these two techniques can be used to augment a dataset for more balanced distribution. We evaluate BalaGen on three publicly available semantic utterance classification (SUC) datasets. One of these is a new COVID-19 Q&A dataset published here for the first time. Our work demonstrates that optimal balancing policies can significantly improve classifier performance, while augmenting just part of the classes and under-sampling others. Furthermore, capitalizing on the advantages of balancing, we show its usefulness in all relevant BalaGen framework components. We validate the superiority of BalaGen on ten semantic utterance datasets taken from real-life goaloriented dialogue systems. Based on our results we encourage using data balancing prior to training for text classification tasks.
Search
Fix data
Co-authors
- Ateret Anaby Tavor 3
- George Kour 2
- Naama Zwerdling 2
- Boaz Carmeli 1
- Ora Fandina 1
- show all...