Fakhri Karray
2024
Reference-free Hallucination Detection for Large Vision-Language Models
Qing Li
|
Jiahui Geng
|
Chenyang Lyu
|
Derui Zhu
|
Maxim Panov
|
Fakhri Karray
Findings of the Association for Computational Linguistics: EMNLP 2024
Large vision-language models (LVLMs) have made significant progress in recent years. While LVLMs exhibit excellent ability in language understanding, question answering, and conversations of visual inputs, they are prone to producing hallucinations. While several methods are proposed to evaluate the hallucinations in LVLMs, most are reference-based and depend on external tools, which complicates their practical application. To assess the viability of alternative methods, it is critical to understand whether the reference-free approaches, which do not rely on any external tools, can efficiently detect hallucinations. Therefore, we initiate an exploratory study to demonstrate the effectiveness of different reference-free solutions in detecting hallucinations in LVLMs. In particular, we conduct an extensive study on three kinds of techniques: uncertainty-based, consistency-based, and supervised uncertainty quantification methods on four representative LVLMs across two different tasks. The empirical results show that the reference-free approaches are capable of effectively detecting non-factual responses in LVLMs, with the supervised uncertainty quantification method outperforming the others, achieving the best performance across different settings.
2023
Can a Prediction’s Rank Offer a More Accurate Quantification of Bias? A Case Study Measuring Sexism in Debiased Language Models
Jad Doughman
|
Shady Shehata
|
Leen Al Qadi
|
Youssef Nafea
|
Fakhri Karray
Proceedings of the 4th Workshop on Evaluation and Comparison of NLP Systems
Pre-trained language models are known to inherit a plethora of contextual biases from their training data. These biases have proven to be projected onto a variety of downstream applications, making their detection and mitigation imminent. Limited research has been conducted to quantify specific bias types, such as benevolent sexism, which may be subtly present within the inferred connotations of a sentence. To this extent, our work aims to: (1) provide a benchmark of sexism sentences; (2) adapt two bias metrics: mean probability score and mean normalized rank; (3) conduct a case study to quantify and analyze sexism in base and de-biased masked language models. We find that debiasing, even in its most effective form (Auto-Debias), solely nullifies the probability score of biasing tokens, while retaining them in high ranks. Auto-Debias illustrates a 90%-96% reduction in mean probability scores from base to debiased models, while only a 3%-16% reduction in mean normalized ranks. Similar to the application of non-parametric statistical tests for data that does not follow a normal distribution, operating on the ranks of predictions rather than their probability scores offers a more representative bias measure.
Search
Co-authors
- Qing Li 1
- Jiahui Geng 1
- Chenyang Lyu 1
- Derui Zhu 1
- Maxim Panov 1
- show all...