Fanshuang Kong
2022
DropMix: A Textual Data Augmentation Combining Dropout with Mixup
Fanshuang Kong
|
Richong Zhang
|
Xiaohui Guo
|
Samuel Mensah
|
Yongyi Mao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Overfitting is a notorious problem when there is insufficient data to train deep neural networks in machine learning tasks. Data augmentation regularization methods such as Dropout, Mixup, and their enhanced variants are effective and prevalent, and achieve promising performance to overcome overfitting. However, in text learning, most of the existing regularization approaches merely adopt ideas from computer vision without considering the importance of dimensionality in natural language processing. In this paper, we argue that the property is essential to overcome overfitting in text learning. Accordingly, we present a saliency map informed textual data augmentation and regularization framework, which combines Dropout and Mixup, namely DropMix, to mitigate the overfitting problem in text learning. In addition, we design a procedure that drops and patches fine grained shapes of the saliency map under the DropMix framework to enhance regularization. Empirical studies confirm the effectiveness of the proposed approach on 12 text classification tasks.
2021
Hypernym Discovery via a Recurrent Mapping Model
Yuhang Bai
|
Richong Zhang
|
Fanshuang Kong
|
Junfan Chen
|
Yongyi Mao
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
Search
Fix data
Co-authors
- Yongyi Mao 2
- Richong Zhang 2
- Yuhang Bai 1
- Junfan Chen 1
- Xiaohui Guo 1
- show all...