Fengjun Pan
2024
Towards the TopMost: A Topic Modeling System Toolkit
Xiaobao Wu
|
Fengjun Pan
|
Anh Tuan Luu
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)
Topic models have a rich history with various applications and have recently been reinvigorated by neural topic modeling. However, these numerous topic models adopt totally distinct datasets, implementations, and evaluations. This impedes quick utilization and fair comparisons, and thereby hinders their research progress and applications. To tackle this challenge, we in this paper propose a Topic Modeling System Toolkit (TopMost). Compared to existing toolkits, TopMost stands out by supporting more extensive features. It covers a broader spectrum of topic modeling scenarios with their complete lifecycles, including datasets, preprocessing, models, training, and evaluations. Thanks to its highly cohesive and decoupled modular design, TopMost enables rapid utilization, fair comparisons, and flexible extensions of diverse cutting-edge topic models. Our code, tutorials, and documentation are available at https://github.com/bobxwu/topmost.
Universal Vulnerabilities in Large Language Models: Backdoor Attacks for In-context Learning
Shuai Zhao
|
Meihuizi Jia
|
Anh Tuan Luu
|
Fengjun Pan
|
Jinming Wen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
In-context learning, a paradigm bridging the gap between pre-training and fine-tuning, has demonstrated high efficacy in several NLP tasks, especially in few-shot settings. Despite being widely applied, in-context learning is vulnerable to malicious attacks. In this work, we raise security concerns regarding this paradigm. Our studies demonstrate that an attacker can manipulate the behavior of large language models by poisoning the demonstration context, without the need for fine-tuning the model. Specifically, we design a new backdoor attack method, named ICLAttack, to target large language models based on in-context learning. Our method encompasses two types of attacks: poisoning demonstration examples and poisoning demonstration prompts, which can make models behave in alignment with predefined intentions. ICLAttack does not require additional fine-tuning to implant a backdoor, thus preserving the model’s generality. Furthermore, the poisoned examples are correctly labeled, enhancing the natural stealth of our attack method. Extensive experimental results across several language models, ranging in size from 1.3B to 180B parameters, demonstrate the effectiveness of our attack method, exemplified by a high average attack success rate of 95.0% across the three datasets on OPT models.
Are LLMs Good Zero-Shot Fallacy Classifiers?
Fengjun Pan
|
Xiaobao Wu
|
Zongrui Li
|
Anh Tuan Luu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Fallacies are defective arguments with faulty reasoning. Detecting and classifying them is a crucial NLP task to prevent misinformation, manipulative claims, and biased decisions. However, existing fallacy classifiers are limited by the requirement for sufficient labeled data for training, which hinders their out-of-distribution (OOD) generalization abilities. In this paper, we focus on leveraging Large Language Models (LLMs) for zero-shot fallacy classification. To elicit fallacy-related knowledge and reasoning abilities of LLMs, we propose diverse single-round and multi-round prompting schemes, applying different taskspecific instructions such as extraction, summarization, and Chain-of-Thought reasoning. With comprehensive experiments on benchmark datasets, we suggest that LLMs could be potential zero-shot fallacy classifiers. In general, LLMs under single-round prompting schemes have achieved acceptable zeroshot performances compared to the best fullshot baselines and can outperform them in all OOD inference scenarios and some opendomain tasks. Our novel multi-round prompting schemes can effectively bring about more improvements, especially for small LLMs. Our analysis further underlines the future research on zero-shot fallacy classification. Codes and data are available at: https://github.com/panFJCharlotte98/Fallacy_Detection.
Search
Fix data
Co-authors
- Luu Anh Tuan 3
- Xiaobao Wu 2
- Meihuizi Jia 1
- Zongrui Li 1
- Jinming Wen 1
- show all...