Large pre-trained language models have recently been expanded and applied to programming language tasks with great success, often through further pre-training of a strictly-natural language model–where training sequences typically contain both natural and (linearised) programming language. Such approaches effectively map both modalities of the sequence into the same embedding space. However, programming language keywords (e.g. “while”) often have very strictly defined semantics. As such, transfer learning from their natural language usage may not necessarily be beneficial to their code application and vise versa. Assuming an already pre-trained language model, in this work we investigate how sequence tokens can be adapted and represented differently, depending on which modality they belong to, and to the ultimate benefit of the downstream task. We experiment with separating embedding spaces between modalities during further model pre-training with modality-relative training objectives. We focus on text-to-code generation and observe consistent improvements across two backbone models and two test sets, measuring pass@k and a novel incremental variation.
Curriculum Learning (CL) is a technique of training models via ranking examples in a typically increasing difficulty trend with the aim of accelerating convergence and improving generalisability. Current approaches for Natural Language Understanding (NLU) tasks use CL to improve in-distribution data performance often via heuristic-oriented or task-agnostic difficulties. In this work, instead, we employ CL for NLU by taking advantage of training dynamics as difficulty metrics, i.e., statistics that measure the behavior of the model at hand on specific task-data instances during training and propose modifications of existing CL schedulers based on these statistics. Differently from existing works, we focus on evaluating models on in-distribution (ID), out-of-distribution (OOD) as well as zero-shot (ZS) cross-lingual transfer datasets. We show across several NLU tasks that CL with training dynamics can result in better performance mostly on zero-shot cross-lingual transfer and OOD settings with improvements up by 8.5% in certain cases. Overall, experiments indicate that training dynamics can lead to better performing models with smoother training compared to other difficulty metrics while being 20% faster on average. In addition, through analysis we shed light on the correlations of task-specific versus task-agnostic metrics.
Accurate alignment between languages is fundamental for improving cross-lingual pre-trained language models (XLMs). Motivated by the natural phenomenon of code-switching (CS) in multilingual speakers, CS has been used as an effective data augmentation method that offers language alignment at word- or phrase-level, in contrast to sentence-level via parallel instances. Existing approaches either use dictionaries or parallel sentences with word-alignment to generate CS data by randomly switching words in a sentence. However, such methods can be suboptimal as dictionaries disregard semantics, and syntax might become invalid after random word switching. In this work, we propose EntityCS, a method that focuses on Entity-level Code-Switching to capture fine-grained cross-lingual semantics without corrupting syntax. We use Wikidata and the English Wikipedia to construct an entity-centric CS corpus by switching entities to their counterparts in other languages. We further propose entity-oriented masking strategies during intermediate model training on the EntityCS corpus for improving entity prediction. Evaluation of the trained models on four entity-centric downstream tasks shows consistent improvements over the baseline with a notable increase of 10% in Fact Retrieval. We release the corpus and models to assist research on code-switching and enriching XLMs with external knowledge.
We propose a multi-task, probabilistic approach to facilitate distantly supervised relation extraction by bringing closer the representations of sentences that contain the same Knowledge Base pairs. To achieve this, we bias the latent space of sentences via a Variational Autoencoder (VAE) that is trained jointly with a relation classifier. The latent code guides the pair representations and influences sentence reconstruction. Experimental results on two datasets created via distant supervision indicate that multi-task learning results in performance benefits. Additional exploration of employing Knowledge Base priors into theVAE reveals that the sentence space can be shifted towards that of the Knowledge Base, offering interpretability and further improving results.
Document-level relation extraction is a complex human process that requires logical inference to extract relationships between named entities in text. Existing approaches use graph-based neural models with words as nodes and edges as relations between them, to encode relations across sentences. These models are node-based, i.e., they form pair representations based solely on the two target node representations. However, entity relations can be better expressed through unique edge representations formed as paths between nodes. We thus propose an edge-oriented graph neural model for document-level relation extraction. The model utilises different types of nodes and edges to create a document-level graph. An inference mechanism on the graph edges enables to learn intra- and inter-sentence relations using multi-instance learning internally. Experiments on two document-level biomedical datasets for chemical-disease and gene-disease associations show the usefulness of the proposed edge-oriented approach.
Inter-sentence relation extraction deals with a number of complex semantic relationships in documents, which require local, non-local, syntactic and semantic dependencies. Existing methods do not fully exploit such dependencies. We present a novel inter-sentence relation extraction model that builds a labelled edge graph convolutional neural network model on a document-level graph. The graph is constructed using various inter- and intra-sentence dependencies to capture local and non-local dependency information. In order to predict the relation of an entity pair, we utilise multi-instance learning with bi-affine pairwise scoring. Experimental results show that our model achieves comparable performance to the state-of-the-art neural models on two biochemistry datasets. Our analysis shows that all the types in the graph are effective for inter-sentence relation extraction.
We present a novel graph-based neural network model for relation extraction. Our model treats multiple pairs in a sentence simultaneously and considers interactions among them. All the entities in a sentence are placed as nodes in a fully-connected graph structure. The edges are represented with position-aware contexts around the entity pairs. In order to consider different relation paths between two entities, we construct up to l-length walks between each pair. The resulting walks are merged and iteratively used to update the edge representations into longer walks representations. We show that the model achieves performance comparable to the state-of-the-art systems on the ACE 2005 dataset without using any external tools.