Flammie A. Pirinen

Also published as: Flammie A Pirinen, Flammie A Pirinen


2024

pdf bib
The Ethical Question – Use of Indigenous Corpora for Large Language Models
Linda Wiechetek | Flammie A. Pirinen | Børre Gaup | Trond Trosterud | Maja Lisa Kappfjell | Sjur Moshagen
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Creating language technology based on language data has become very popular with the recent advances of large language models and neural network technologies. This makes language resources very valuable, and especially in case of indigenous languages, the scarce resources are even more precious. Given the good results of simply fetching everything you can from the internet and feeding it to neural networks in English, there has been more work on doing the same for all languages. However, indigenous language resources as they are on the web are not comparable in that they would encode the most recent normativised language in all its aspects. This problematic is further due to not understanding the texts input to models or output by models by the people who work on them. Corpora also have intelligent property rights and copyrights that are not respected. Furthermore, the web is filled with the result of language model -generated texts. In this article we describe an ethical and sustainable way to work with indigenous languages.

2022

pdf bib
Reusing a Multi-lingual Setup to Bootstrap a Grammar Checker for a Very Low Resource Language without Data
Inga Lill Sigga Mikkelsen | Linda Wiechetek | Flammie A Pirinen
Proceedings of the Fifth Workshop on the Use of Computational Methods in the Study of Endangered Languages

Grammar checkers (GEC) are needed for digital language survival. Very low resource languages like Lule Sámi with less than 3,000 speakers need to hurry to build these tools, but do not have the big corpus data that are required for the construction of machine learning tools. We present a rule-based tool and a workflow where the work done for a related language can speed up the process. We use an existing grammar to infer rules for the new language, and we do not need a large gold corpus of annotated grammar errors, but a smaller corpus of regression tests is built while developing the tool. We present a test case for Lule Sámi reusing resources from North Sámi, show how we achieve a categorisation of the most frequent errors, and present a preliminary evaluation of the system. We hope this serves as an inspiration for small languages that need advanced tools in a limited amount of time, but do not have big data.

2021

pdf bib
Proceedings of the Seventh International Workshop on Computational Linguistics of Uralic Languages
Flammie A Pirinen | Timofey Arhangelskiy | Trond Trosterud | Michael Rießler
Proceedings of the Seventh International Workshop on Computational Linguistics of Uralic Languages

pdf bib
No more fumbling in the dark - Quality assurance of high-level NLP tools in a multi-lingual infrastructure
Linda Wiechetek | Flammie A Pirinen | Børre Gaup | Thomas Omma
Proceedings of the Seventh International Workshop on Computational Linguistics of Uralic Languages

pdf bib
Numerals and what counts
Jack Rueter | Niko Partanen | Flammie A. Pirinen
Proceedings of the Fifth Workshop on Universal Dependencies (UDW, SyntaxFest 2021)