2021
pdf
bib
abs
ONE: Toward ONE model, ONE algorithm, ONE corpus dedicated to sentiment analysis of Arabic/Arabizi and its dialects
Imane Guellil
|
Faical Azouaou
|
Fodil Benali
|
Hachani Ala-Eddine
Proceedings of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
Arabic is the official language of 22 countries, spoken by more than 400 million speakers. Each one of this country use at least on dialect for daily life conversation. Then, Arabic has at least 22 dialects. Each dialect can be written in Arabic or Arabizi Scripts. The most recent researches focus on constructing a language model and a training corpus for each dialect, in each script. Following this technique means constructing 46 different resources (by including the Modern Standard Arabic, MSA) for handling only one language. In this paper, we extract ONE corpus, and we propose ONE algorithm to automatically construct ONE training corpus using ONE classification model architecture for sentiment analysis MSA and different dialects. After manually reviewing the training corpus, the obtained results outperform all the research literature results for the targeted test corpora.
2018
pdf
bib
abs
Approche Hybride pour la translitération de l’Arabizi Algérien : une étude préliminaire (A hybrid approach for the transliteration of Algerian Arabizi: A primary study)
Imane Guellil
|
Azouaou Faical
|
Fodil Benali
|
Ala Eddine Hachani
|
Houda Saadane
Actes de la Conférence TALN. Volume 1 - Articles longs, articles courts de TALN
Dans cet article, nous présentons une approche hybride pour la translitération de l’arabizi algérien. Nous avons élaboré un ensemble de règles permettant le passage de l’arabizi vers l’arabe. Á partir de ces règles nous générons un ensemble de candidats pour la translitération de chaque mot en arabizi vers l’arabe, et un parmi ces candidats sera ensuite identifié et extrait comme le meilleur candidat. Cette approche a été expérimentée en utilisant trois corpus de tests. Les résultats obtenus montrent une amélioration du score de précision qui était pour le meilleur des cas de l’ordre de 75,11%. Ces résultats ont aussi permis de vérifier que notre approche est très compétitive par rapport aux travaux traitant de la translitération de l’arabizi en général.
pdf
bib
abs
Arabizi sentiment analysis based on transliteration and automatic corpus annotation
Imane Guellil
|
Ahsan Adeel
|
Faical Azouaou
|
Fodil Benali
|
Ala-eddine Hachani
|
Amir Hussain
Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
Arabizi is a form of writing Arabic text which relies on Latin letters, numerals and punctuation rather than Arabic letters. In the literature, the difficulties associated with Arabizi sentiment analysis have been underestimated, principally due to the complexity of Arabizi. In this paper, we present an approach to automatically classify sentiments of Arabizi messages into positives or negatives. In the proposed approach, Arabizi messages are first transliterated into Arabic. Afterwards, we automatically classify the sentiment of the transliterated corpus using an automatically annotated corpus. For corpus validation, shallow machine learning algorithms such as Support Vectors Machine (SVM) and Naive Bays (NB) are used. Simulations results demonstrate the outperformance of NB algorithm over all others. The highest achieved F1-score is up to 78% and 76% for manually and automatically transliterated dataset respectively. Ongoing work is aimed at improving the transliterator module and annotated sentiment dataset.