2023
pdf
bib
abs
Return to the Source: Assessing Machine Translation Suitability
Francesco Fernicola
|
Silvia Bernardini
|
Federico Garcea
|
Adriano Ferraresi
|
Alberto Barrón-Cedeño
Proceedings of the 24th Annual Conference of the European Association for Machine Translation
We approach the task of assessing the suitability of a source text for translation by transferring the knowledge from established MT evaluation metrics to a model able to predict MT quality a priori from the source text alone. To open the door to experiments in this regard, we depart from reference English-German parallel corpora to build a corpus of 14,253 source text-quality score tuples. The tuples include four state-of-the-art metrics: cushLEPOR, BERTScore, COMET, and TransQuest. With this new resource at hand, we fine-tune XLM-RoBERTa, both in a single-task and a multi-task setting, to predict these evaluation scores from the source text alone. Results for this methodology are promising, with the single-task model able to approximate well-established MT evaluation and quality estimation metrics - without looking at the actual machine translations - achieving low RMSE values in the [0.1-0.2] range and Pearson correlation scores up to 0.688.
pdf
bib
abs
The MT@BZ corpus: machine translation & legal language
Flavia De Camillis
|
Egon W. Stemle
|
Elena Chiocchetti
|
Francesco Fernicola
Proceedings of the 24th Annual Conference of the European Association for Machine Translation
The paper reports on the creation, annotation and curation of the MT@BZ corpus, a bilingual (Italian–South Tyrolean German) corpus of machine-translated legal texts from the officially multilingual Province of Bolzano, Italy. It is the first human error-annotated corpus (using an adapted SCATE taxonomy) of machine-translated legal texts in this language combination that includes a lesser-used standard variety. The data of the project will be made available on GitHub and another repository. The output of the customized engine achieved notably better BLEU, TER and chrF2 scores than the baseline. Over 50% of the segments needed no human revision due to customization. The most frequent error categories were mistranslations and bilingual (legal) terminology errors. Our contribution brings fine-grained insights to Machine translation evaluation research, as it concerns a less common language combination, a lesser-used language variety and a societally relevant specialized domain. Such results are necessary to implement and inform the use of MT in institutional contexts of smaller language communities.
pdf
bib
abs
UniBoe’s at SemEval-2023 Task 10: Model-Agnostic Strategies for the Improvement of Hate-Tuned and Generative Models in the Classification of Sexist Posts
Arianna Muti
|
Francesco Fernicola
|
Alberto Barrón-Cedeño
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
We present our submission to SemEval-2023 Task 10: Explainable Detection of Online Sexism (EDOS). We address all three tasks: Task A consists of identifying whether a post is sexist. If so, Task B attempts to assign it one of four categories: threats, derogation, animosity, and prejudiced discussions. Task C aims for an even more fine-grained classification, divided among 11 classes. Our team UniBoe’s experiments with fine-tuning of hate-tuned Transformer-based models and priming for generative models. In addition, we explore model-agnostic strategies, such as data augmentation techniques combined with active learning, as well as obfuscation of identity terms. Our official submissions obtain an F1_score of 0.83 for Task A, 0.58 for Task B and 0.32 for Task C.
2022
pdf
bib
abs
Misogyny and Aggressiveness Tend to Come Together and Together We Address Them
Arianna Muti
|
Francesco Fernicola
|
Alberto Barrón-Cedeño
Proceedings of the Thirteenth Language Resources and Evaluation Conference
We target the complementary binary tasks of identifying whether a tweet is misogynous and, if that is the case, whether it is also aggressive. We compare two ways to address these problems: one multi-class model that discriminates between all the classes at once: not misogynous, non aggressive-misogynous and aggressive-misogynous; as well as a cascaded approach where the binary classification is carried out separately (misogynous vs non-misogynous and aggressive vs non-aggressive) and then joined together. For the latter, two training and three testing scenarios are considered. Our models are built on top of AlBERTo and are evaluated on the framework of Evalita’s 2020 shared task on automatic misogyny and aggressiveness identification in Italian tweets. Our cascaded models —including the strong naïve baseline— outperform significantly the top submissions to Evalita, reaching state-of-the-art performance without relying on any external information.