George Polovets
2023
Adaptation Approaches for Nearest Neighbor Language Models
Rishabh Bhardwaj
|
George Polovets
|
Monica Sunkara
Findings of the Association for Computational Linguistics: ACL 2023
Semi-parametric Nearest Neighbor Language Models (kNN-LMs) have produced impressive gains over purely parametric LMs, by leveraging large-scale neighborhood retrieval over external memory datastores. However, there has been little investigation into adapting such models for new domains. This work attempts to fill that gap and suggests the following approaches for adapting kNN-LMs — 1) adapting the underlying LM (using Adapters), 2) expanding neighborhood retrieval over an additional adaptation datastore, and 3) adapting the weights (scores) of retrieved neighbors using a learned Rescorer module. We study each adaptation strategy separately, as well as the combined performance improvement through ablation experiments and an extensive set of evaluations run over seven adaptation domains. Our combined adaptation approach consistently outperforms purely parametric adaptation and zero-shot (kNN-LM) baselines that construct datastores from the adaptation data. On average, we see perplexity improvements of 17.1% and 16% for these respective baselines, across domains.
2022
Meta-Learning the Difference: Preparing Large Language Models for Efficient Adaptation
Zejiang Hou
|
Julian Salazar
|
George Polovets
Transactions of the Association for Computational Linguistics, Volume 10
Large pretrained language models (PLMs) are often domain- or task-adapted via finetuning or prompting. Finetuning requires modifying all of the parameters and having enough data to avoid overfitting while prompting requires no training and few examples but limits performance. Instead, we prepare PLMs for data- and parameter-efficient adaptation by learning to learn the difference between general and adapted PLMs. This difference is expressed in terms of model weights and sublayer structure through our proposed dynamic low-rank reparameterization and learned architecture controller. Experiments on few-shot dialogue completion, low-resource abstractive summarization, and multi-domain language modeling show improvements in adaptation time and performance over direct finetuning or preparation via domain-adaptive pretraining. Ablations show our task-adaptive reparameterization (TARP) and model search (TAMS) components individually improve on other parameter-efficient transfer like adapters and structure-learning methods like learned sparsification.