Current Vision-Language (VL) models owe their success to large-scale pre-training on web-collected data, which in turn requires high-capacity architectures and large compute resources for training. We posit that when the downstream tasks are known in advance, which is in practice common, the pretraining process can be aligned to the downstream domain, leading to more efficient and accurate models, while shortening the pretraining step. To this end, we introduce a domain-aligned pretraining strategy that, without additional data collection, improves the accuracy on a domain of interest, herein, that of human activities, while largely preserving the generalist knowledge. At the core of our approach stands a new LLM-based method that, provided with a simple set of concept seeds, produces a concept hierarchy with high coverage of the target domain.The concept hierarchy is used to filter a large-scale web-crawled dataset and, then, enhance the resulting instances with targeted synthetic labels. We study in depth how to train such approaches and their resulting behavior. We further show generalization to video-based data by introducing a fast adaptation approach for transitioning from a static (image) model to a dynamic one (i.e. with temporal modeling). On the domain of interest, our approach significantly outperforms models trained on up to 60× more samples and between 10-100× shorter training schedules for image retrieval, video retrieval and action recognition. Code will be released.
Large language models (LLMs) have revolutionized language processing, delivering outstanding results across multiple applications. However, deploying LLMs on edge devices poses several challenges with respect to memory, energy, and compute costs, limiting their widespread use in devices such as mobile phones. A promising solution is to reduce the number of bits used to represent weights and activations. While existing works have found partial success at quantizing LLMs to lower bitwidths, e.g. 4-bit weights, quantizing activations beyond 16 bits often leads to large computational overheads due to poor on-device quantization support, or a considerable accuracy drop. Yet, 8-bit activations are very attractive for on-device deployment as they would enable LLMs to fully exploit mobile-friendly hardware, e.g. Neural Processing Units (NPUs). In this work, we make a first attempt to facilitate the on-device deployment of LLMs using integer-only quantization. We first investigate the limitations of existing quantization methods for on-device deployment, with a special focus on activation quantization. We then address these limitations by introducing a simple post-training quantization method, named MobileQuant, that extends previous weight equivalent transformation works by jointly optimizing the weight transformation and activation range parameters in an end-to-end manner. MobileQuant demonstrates superior capabilities over existing methods by 1) achieving near-lossless quantization on a wide range of LLM benchmarks, 2) reducing latency and energy consumption by 20%-50% compared to current on-device quantization strategies, 3) requiring limited compute budget, 4) being compatible with mobile-friendly compute units, e.g. NPU.
In this paper, we focus on task-specific question answering (QA). To this end, we introduce a method for generating exhaustive and high-quality training data, which allows us to train compact (e.g., run on a mobile device), task-specific QA models that are competitive against GPT variants. The key technological enabler is a novel mechanism for automatic question-answer generation from procedural text which can ingest large amounts of textual instructions and produce exhaustive in-domain QA training data. While current QA data generation methods can produce well-formed and varied data, their non-exhaustive nature is sub-optimal for training a QA model. In contrast, we leverage the highly structured aspect of procedural text and represent each step and the overall flow of the procedure as graphs. We then condition on graph nodes to automatically generate QA pairs in an exhaustive and controllable manner. Comprehensive evaluations of our method show that: 1) small models trained with our data achieve excellent performance on the target QA task, even exceeding that of GPT3 and ChatGPT despite being several orders of magnitude smaller. 2) semantic coverage is the key indicator for downstream QA performance. Crucially, while large language models excel at syntactic diversity, this does not necessarily result in improvements on the end QA model. In contrast, the higher semantic coverage provided by our method is critical for QA performance.
This paper is on the problem of Knowledge-Based Visual Question Answering (KB-VQA). Recent works have emphasized the significance of incorporating both explicit (through external databases) and implicit (through LLMs) knowledge to answer questions requiring external knowledge effectively. A common limitation of such approaches is that they consist of relatively complicated pipelines and often heavily rely on accessing GPT-3 API. Our main contribution in this paper is to propose a much simpler and readily reproducible pipeline which, in a nutshell, is based on efficient in-context learning by prompting LLaMA (1 and 2) using question-informative captions as contextual information. Contrary to recent approaches, our method is training-free, does not require access to external databases or APIs, and yet achieves state-of-the-art accuracy on the OK-VQA and A-OK-VQA datasets. Finally, we perform several ablation studies to understand important aspects of our method. Our code is publicly available at https://github.com/alexandrosXe/ASimple-Baseline-For-Knowledge-Based-VQA