Gokul T


2022

pdf bib
Efficient Deep Learning-based Sentence Boundary Detection in Legal Text
Reshma Sheik | Gokul T | S Nirmala
Proceedings of the Natural Legal Language Processing Workshop 2022

A key component of the Natural Language Processing (NLP) pipeline is Sentence Boundary Detection (SBD). Erroneous SBD could affect other processing steps and reduce performance. A few criteria based on punctuation and capitalization are necessary to identify sentence borders in well-defined corpora. However, due to several grammatical ambiguities, the complex structure of legal data poses difficulties for SBD. In this paper, we have trained a neural network framework for identifying the end of the sentence in legal text. We used several state-of-the-art deep learning models, analyzed their performance, and identified that Convolutional Neural Network(CNN) outperformed other deep learning frameworks. We compared the results with rule-based, statistical, and transformer-based frameworks. The best neural network model outscored the popular rule-based framework with an improvement of 8% in the F1 score. Although domain-specific statistical models have slightly improved performance, the trained CNN is 80 times faster in run-time and doesn’t require much feature engineering. Furthermore, after extensive pretraining, the transformer models fall short in overall performance compared to the best deep learning model.