Grace Proebsting
2025
Biases in Large Language Model-Elicited Text: A Case Study in Natural Language Inference
Grace Proebsting
|
Adam Poliak
Proceedings of the 31st International Conference on Computational Linguistics
We test whether NLP datasets created with Large Language Models (LLMs) contain annotation artifacts and social biases like NLP datasets elicited from crowd-source workers. We recreate a portion of the Stanford Natural Language Inference corpus using GPT-4, Llama-2 70b for Chat, and Mistral 7b Instruct. We train hypothesis-only classifiers to determine whether LLM-elicited NLI datasets contain annotation artifacts. Next, we use point-wise mutual information to identify the words in each dataset that are associated with gender, race, and age-related terms. On our LLM-generated NLI datasets, fine-tuned BERT hypothesis-only classifiers achieve between 86-96% accuracy. Our analyses further characterize the annotation artifacts and stereotypical biases in LLM-generated datasets.