Gyubok Lee


2024

pdf bib
Overview of the EHRSQL 2024 Shared Task on Reliable Text-to-SQL Modeling on Electronic Health Records
Gyubok Lee | Sunjun Kweon | Seongsu Bae | Edward Choi
Proceedings of the 6th Clinical Natural Language Processing Workshop

Electronic Health Records (EHRs) are relational databases that store the entire medical histories of patients within hospitals. They record numerous aspects of patients’ medical care, from hospital admission and diagnosis to treatment and discharge. While EHRs are vital sources of clinical data, exploring them beyond a predefined set of queries requires skills in query languages like SQL. To make information retrieval more accessible, one strategy is to build a question-answering system, possibly leveraging text-to-SQL models that can automatically translate natural language questions into corresponding SQL queries and use these queries to retrieve the answers. The EHRSQL 2024 shared task aims to advance and promote research in developing a question-answering system for EHRs using text-to-SQL modeling, capable of reliably providing requested answers to various healthcare professionals to improve their clinical work processes and satisfy their needs. Among more than 100 participants who applied to the shared task, eight teams completed the entire shared task processes and demonstrated a wide range of methods to effectively solve this task. In this paper, we describe the task of reliable text-to-SQL modeling, the dataset, and the methods and results of the participants. We hope this shared task will spur further research and insights into developing reliable question-answering systems for EHRs.

pdf bib
Publicly Shareable Clinical Large Language Model Built on Synthetic Clinical Notes
Sunjun Kweon | Junu Kim | Jiyoun Kim | Sujeong Im | Eunbyeol Cho | Seongsu Bae | Jungwoo Oh | Gyubok Lee | Jong Hak Moon | Seng Chan You | Seungjin Baek | Chang Hoon Han | Yoon Bin Jung | Yohan Jo | Edward Choi
Findings of the Association for Computational Linguistics: ACL 2024

The development of large language models tailored for handling patients’ clinical notes is often hindered by the limited accessibility and usability of these notes due to strict privacy regulations.To address these challenges, we first create synthetic large-scale clinical notes using publicly available case reports extracted from biomedical literature.We then use these synthetic notes to train our specialized clinical large language model, Asclepius.While Asclepius is trained on synthetic data, we assess its potential performance in real-world applications by evaluating it using real clinical notes.We benchmark Asclepius against several other large language models, including GPT-3.5-turbo and other open-source alternatives. To further validate our approach using synthetic notes, we also compare Asclepius with its variants trained on real clinical notes. Our findings convincingly demonstrate that synthetic clinical notes can serve as viable substitutes for real ones when constructing high-performing clinical language models. This conclusion is supported by detailed evaluations conducted by both GPT-4 and medical professionals. All resources—including weights, codes, and data—used in the development of Asclepius will be made publicly accessible for future research.

pdf bib
EHR-SeqSQL : A Sequential Text-to-SQL Dataset For Interactively Exploring Electronic Health Records
Jaehee Ryu | Seonhee Cho | Gyubok Lee | Edward Choi
Findings of the Association for Computational Linguistics: ACL 2024

In this paper, we introduce EHR-SeqSQL, a novel sequential text-to-SQL dataset for Electronic Health Record (EHR) databases. EHR-SeqSQL is designed to address critical yet underexplored aspects in text-to-SQL parsing: interactivity, compositionality, and efficiency. To the best of our knowledge, EHR-SeqSQL is not only the largest but also the first medical text-to-SQL dataset benchmark to include sequential and contextual questions. We provide a data split and the new test set designed to assess compositional generalization ability. Our experiments demonstrate the superiority of a multi-turn approach over a single-turn approach in learning compositionality. Additionally, our dataset integrates specially crafted tokens into SQL queries to improve execution efficiency. With EHR-SeqSQL, we aim to bridge the gap between practical needs and academic research in the text-to-SQL domain.

2021

pdf bib
Improving Lexically Constrained Neural Machine Translation with Source-Conditioned Masked Span Prediction
Gyubok Lee | Seongjun Yang | Edward Choi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Accurate terminology translation is crucial for ensuring the practicality and reliability of neural machine translation (NMT) systems. To address this, lexically constrained NMT explores various methods to ensure pre-specified words and phrases appear in the translation output. However, in many cases, those methods are studied on general domain corpora, where the terms are mostly uni- and bi-grams (>98%). In this paper, we instead tackle a more challenging setup consisting of domain-specific corpora with much longer n-gram and highly specialized terms. Inspired by the recent success of masked span prediction models, we propose a simple and effective training strategy that achieves consistent improvements on both terminology and sentence-level translation for three domain-specific corpora in two language pairs.