Hang Hua
2024
BattleAgent: Multi-modal Dynamic Emulation on Historical Battles to Complement Historical Analysis
Shuhang Lin
|
Wenyue Hua
|
Lingyao Li
|
Che-Jui Chang
|
Lizhou Fan
|
Jianchao Ji
|
Hang Hua
|
Mingyu Jin
|
Jiebo Luo
|
Yongfeng Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
This paper presents BattleAgent, a detailed emulation demonstration system that combines the Large Vision-Language Model (VLM) and Multi-Agent System (MAS). This novel system aims to emulate complex dynamic interactions among multiple agents, as well as between agents and their environments, over a period of time. The emulation showcases the current capabilities of agents, featuring fine-grained multi-modal interactions between agents and landscapes. It develops customizable agent structures to meet specific situational requirements, for example, a variety of battle-related activities like scouting and trench digging. These components collaborate to recreate historical events in a lively and comprehensive manner. This methodology holds the potential to substantially improve visualization of historical events and deepen our understanding of historical events especially from the perspective of decision making. The data and code for this project are accessible at https://github.com/agiresearch/battleagent and the demo is accessible at https://drive.google.com/file/d/1I5B3KWiYCSSP1uMiPGNmXlTmild-MzRJ/view?usp=sharing.
2021
Noise Stability Regularization for Improving BERT Fine-tuning
Hang Hua
|
Xingjian Li
|
Dejing Dou
|
Chengzhong Xu
|
Jiebo Luo
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Fine-tuning pre-trained language models suchas BERT has become a common practice dom-inating leaderboards across various NLP tasks. Despite its recent success and wide adoption,this process is unstable when there are onlya small number of training samples available. The brittleness of this process is often reflectedby the sensitivity to random seeds. In this pa-per, we propose to tackle this problem basedon the noise stability property of deep nets,which is investigated in recent literature (Aroraet al., 2018; Sanyal et al., 2020). Specifically,we introduce a novel and effective regulariza-tion method to improve fine-tuning on NLPtasks, referred to asLayer-wiseNoiseStabilityRegularization (LNSR). We extend the theo-ries about adding noise to the input and provethat our method gives a stabler regularizationeffect. We provide supportive evidence by ex-perimentally confirming that well-performingmodels show a low sensitivity to noise andfine-tuning with LNSR exhibits clearly bet-ter generalizability and stability. Furthermore,our method also demonstrates advantages overother state-of-the-art algorithms including L2-SP (Li et al., 2018), Mixout (Lee et al., 2020)and SMART (Jiang et al., 20)