Hechang Chen
2022
A Coarse-to-fine Cascaded Evidence-Distillation Neural Network for Explainable Fake News Detection
Zhiwei Yang
|
Jing Ma
|
Hechang Chen
|
Hongzhan Lin
|
Ziyang Luo
|
Yi Chang
Proceedings of the 29th International Conference on Computational Linguistics
Existing fake news detection methods aim to classify a piece of news as true or false and provide veracity explanations, achieving remarkable performances. However, they often tailor automated solutions on manual fact-checked reports, suffering from limited news coverage and debunking delays. When a piece of news has not yet been fact-checked or debunked, certain amounts of relevant raw reports are usually disseminated on various media outlets, containing the wisdom of crowds to verify the news claim and explain its verdict. In this paper, we propose a novel Coarse-to-fine Cascaded Evidence-Distillation (CofCED) neural network for explainable fake news detection based on such raw reports, alleviating the dependency on fact-checked ones. Specifically, we first utilize a hierarchical encoder for web text representation, and then develop two cascaded selectors to select the most explainable sentences for verdicts on top of the selected top-K reports in a coarse-to-fine manner. Besides, we construct two explainable fake news datasets, which is publicly available. Experimental results demonstrate that our model significantly outperforms state-of-the-art detection baselines and generates high-quality explanations from diverse evaluation perspectives.
2021
HiTRANS: A Hierarchical Transformer Network for Nested Named Entity Recognition
Zhiwei Yang
|
Jing Ma
|
Hechang Chen
|
Yunke Zhang
|
Yi Chang
Findings of the Association for Computational Linguistics: EMNLP 2021
Nested Named Entity Recognition (NNER) has been extensively studied, aiming to identify all nested entities from potential spans (i.e., one or more continuous tokens). However, recent studies for NNER either focus on tedious tagging schemas or utilize complex structures, which fail to learn effective span representations from the input sentence with highly nested entities. Intuitively, explicit span representations will contribute to NNER due to the rich context information they contain. In this study, we propose a Hierarchical Transformer (HiTRANS) network for the NNER task, which decomposes the input sentence into multi-grained spans and enhances the representation learning in a hierarchical manner. Specifically, we first utilize a two-phase module to generate span representations by aggregating context information based on a bottom-up and top-down transformer network. Then a label prediction layer is designed to recognize nested entities hierarchically, which naturally explores semantic dependencies among different spans. Experiments on GENIA, ACE-2004, ACE-2005 and NNE datasets demonstrate that our proposed method achieves much better performance than the state-of-the-art approaches.