Helen Margetts


2021

pdf bib
HateCheck: Functional Tests for Hate Speech Detection Models
Paul Röttger | Bertie Vidgen | Dong Nguyen | Zeerak Waseem | Helen Margetts | Janet Pierrehumbert
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Detecting online hate is a difficult task that even state-of-the-art models struggle with. Typically, hate speech detection models are evaluated by measuring their performance on held-out test data using metrics such as accuracy and F1 score. However, this approach makes it difficult to identify specific model weak points. It also risks overestimating generalisable model performance due to increasingly well-evidenced systematic gaps and biases in hate speech datasets. To enable more targeted diagnostic insights, we introduce HateCheck, a suite of functional tests for hate speech detection models. We specify 29 model functionalities motivated by a review of previous research and a series of interviews with civil society stakeholders. We craft test cases for each functionality and validate their quality through a structured annotation process. To illustrate HateCheck’s utility, we test near-state-of-the-art transformer models as well as two popular commercial models, revealing critical model weaknesses.

pdf bib
An Expert Annotated Dataset for the Detection of Online Misogyny
Ella Guest | Bertie Vidgen | Alexandros Mittos | Nishanth Sastry | Gareth Tyson | Helen Margetts
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Online misogyny is a pernicious social problem that risks making online platforms toxic and unwelcoming to women. We present a new hierarchical taxonomy for online misogyny, as well as an expert labelled dataset to enable automatic classification of misogynistic content. The dataset consists of 6567 labels for Reddit posts and comments. As previous research has found untrained crowdsourced annotators struggle with identifying misogyny, we hired and trained annotators and provided them with robust annotation guidelines. We report baseline classification performance on the binary classification task, achieving accuracy of 0.93 and F1 of 0.43. The codebook and datasets are made freely available for future researchers.

pdf bib
Introducing CAD: the Contextual Abuse Dataset
Bertie Vidgen | Dong Nguyen | Helen Margetts | Patricia Rossini | Rebekah Tromble
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Online abuse can inflict harm on users and communities, making online spaces unsafe and toxic. Progress in automatically detecting and classifying abusive content is often held back by the lack of high quality and detailed datasets. We introduce a new dataset of primarily English Reddit entries which addresses several limitations of prior work. It (1) contains six conceptually distinct primary categories as well as secondary categories, (2) has labels annotated in the context of the conversation thread, (3) contains rationales and (4) uses an expert-driven group-adjudication process for high quality annotations. We report several baseline models to benchmark the work of future researchers. The annotated dataset, annotation guidelines, models and code are freely available.

2020

pdf bib
Detecting East Asian Prejudice on Social Media
Bertie Vidgen | Scott Hale | Ella Guest | Helen Margetts | David Broniatowski | Zeerak Waseem | Austin Botelho | Matthew Hall | Rebekah Tromble
Proceedings of the Fourth Workshop on Online Abuse and Harms

During COVID-19 concerns have heightened about the spread of aggressive and hateful language online, especially hostility directed against East Asia and East Asian people. We report on a new dataset and the creation of a machine learning classifier that categorizes social media posts from Twitter into four classes: Hostility against East Asia, Criticism of East Asia, Meta-discussions of East Asian prejudice, and a neutral class. The classifier achieves a macro-F1 score of 0.83. We then conduct an in-depth ground-up error analysis and show that the model struggles with edge cases and ambiguous content. We provide the 20,000 tweet training dataset (annotated by experienced analysts), which also contains several secondary categories and additional flags. We also provide the 40,000 original annotations (before adjudication), the full codebook, annotations for COVID-19 relevance and East Asian relevance and stance for 1,000 hashtags, and the final model.

pdf bib
Recalibrating classifiers for interpretable abusive content detection
Bertie Vidgen | Scott Hale | Sam Staton | Tom Melham | Helen Margetts | Ohad Kammar | Marcin Szymczak
Proceedings of the Fourth Workshop on Natural Language Processing and Computational Social Science

We investigate the use of machine learning classifiers for detecting online abuse in empirical research. We show that uncalibrated classifiers (i.e. where the ‘raw’ scores are used) align poorly with human evaluations. This limits their use for understanding the dynamics, patterns and prevalence of online abuse. We examine two widely used classifiers (created by Perspective and Davidson et al.) on a dataset of tweets directed against candidates in the UK’s 2017 general election. A Bayesian approach is presented to recalibrate the raw scores from the classifiers, using probabilistic programming and newly annotated data. We argue that interpretability evaluation and recalibration is integral to the application of abusive content classifiers.

2019

pdf bib
Challenges and frontiers in abusive content detection
Bertie Vidgen | Alex Harris | Dong Nguyen | Rebekah Tromble | Scott Hale | Helen Margetts
Proceedings of the Third Workshop on Abusive Language Online

Online abusive content detection is an inherently difficult task. It has received considerable attention from academia, particularly within the computational linguistics community, and performance appears to have improved as the field has matured. However, considerable challenges and unaddressed frontiers remain, spanning technical, social and ethical dimensions. These issues constrain the performance, efficiency and generalizability of abusive content detection systems. In this article we delineate and clarify the main challenges and frontiers in the field, critically evaluate their implications and discuss potential solutions. We also highlight ways in which social scientific insights can advance research. We discuss the lack of support given to researchers working with abusive content and provide guidelines for ethical research.