Henry Tsai


2021

pdf bib
A Simple and Effective Positional Encoding for Transformers
Pu-Chin Chen | Henry Tsai | Srinadh Bhojanapalli | Hyung Won Chung | Yin-Wen Chang | Chun-Sung Ferng
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Transformer models are permutation equivariant. To supply the order and type information of the input tokens, position and segment embeddings are usually added to the input. Recent works proposed variations of positional encodings with relative position encodings achieving better performance. Our analysis shows that the gain actually comes from moving positional information to attention layer from the input. Motivated by this, we introduce Decoupled Positional Attention for Transformers (DIET), a simple yet effective mechanism to encode position and segment information into the Transformer models. The proposed method has faster training and inference time, while achieving competitive performance on GLUE, XTREME and WMT benchmarks. We further generalize our method to long-range transformers and show performance gain.

pdf bib
Learning Task Sampling Policy for Multitask Learning
Dhanasekar Sundararaman | Henry Tsai | Kuang-Huei Lee | Iulia Turc | Lawrence Carin
Findings of the Association for Computational Linguistics: EMNLP 2021

It has been shown that training multi-task models with auxiliary tasks can improve the target task quality through cross-task transfer. However, the importance of each auxiliary task to the primary task is likely not known a priori. While the importance weights of auxiliary tasks can be manually tuned, it becomes practically infeasible with the number of tasks scaling up. To address this, we propose a search method that automatically assigns importance weights. We formulate it as a reinforcement learning problem and learn a task sampling schedule based on the evaluation accuracy of the multi-task model. Our empirical evaluation on XNLI and GLUE shows that our method outperforms uniform sampling and the corresponding single-task baseline.

2019

pdf bib
Small and Practical BERT Models for Sequence Labeling
Henry Tsai | Jason Riesa | Melvin Johnson | Naveen Arivazhagan | Xin Li | Amelia Archer
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We propose a practical scheme to train a single multilingual sequence labeling model that yields state of the art results and is small and fast enough to run on a single CPU. Starting from a public multilingual BERT checkpoint, our final model is 6x smaller and 27x faster, and has higher accuracy than a state-of-the-art multilingual baseline. We show that our model especially outperforms on low-resource languages, and works on codemixed input text without being explicitly trained on codemixed examples. We showcase the effectiveness of our method by reporting on part-of-speech tagging and morphological prediction on 70 treebanks and 48 languages.