Hongde Liu


2025

pdf bib
DialogueMMT: Dialogue Scenes Understanding Enhanced Multi-modal Multi-task Tuning for Emotion Recognition in Conversations
ChenYuan He | Senbin Zhu | Hongde Liu | Fei Gao | Yuxiang Jia | Hongying Zan | Min Peng
Proceedings of the 31st International Conference on Computational Linguistics

Emotion recognition in conversations (ERC) has garnered significant attention from the research community. However, due to the complexity of visual scenes and dialogue contextual dependencies in conversations, previous ERC methods fail to handle emotional cues from both visual sources and discourse structures. Furthermore, existing state-of-the-art ERC models are trained and tested separately on each single ERC dataset, not verifying their effectiveness across multiple datasets simultaneously. To address these challenges, this paper proposes an innovative framework for ERC, called Dialogue Scenes Understanding Enhanced Multi-modal Multi-task Tuning (DialogueMMT). More concretely, a novel video-language connector is applied within the large vision-language model for capturing video features effectively. Additionally, we utilize multi-task instruction tuning with a unified ERC dataset to enhance the model’s understanding of multi-modal dialogue scenes and employ a chain-of-thought strategy to improve emotion classification performance. Extensive experimental results on three benchmark ERC datasets indicate that the proposed DialogueMMT framework consistently outperforms existing state-of-the-art approaches in terms of overall performance.

pdf bib
GenWebNovel: A Genre-oriented Corpus of Entities in Chinese Web Novels
Hanjie Zhao | Yuchen Yan | Senbin Zhu | Hongde Liu | Yuxiang Jia | Hongying Zan | Min Peng
Proceedings of the 31st International Conference on Computational Linguistics

Entities are important to understanding literary works, which emphasize characters, plots and environment. The research on entity recognition, especially nested entity recognition in the literary domain is still insufficient partly due to insufficient annotated data. To address this issue, we construct the first Genre-oriented Corpus for Entity Recognition in Chinese Web Novels, namely GenWebNovel, comprising 400 chapters totaling 1,214,283 tokens under two genres, XuanHuan (Eastern Fantasy) and History. Based on the corpus, we analyze the distribution of different types of entities, including person, location, and organization. We also compare the nesting patterns of nested entities between GenWebNovel and the English corpus LitBank. Even though both belong to the literary domain, entities in different genres share few overlaps, making genre adaptation of NER (Named Entity Recognition) a hard problem. We propose a novel method that utilizes a pre-trained language model as an In-context learning example retriever to boost the performance of large language models. Our experiments show that this approach significantly enhances entity recognition, matching state-of-the-art (SOTA) models without requiring additional training data. Our code, dataset, and model are available at https://github.com/hjzhao73/GenWebNovel.

pdf bib
SILC-EFSA: Self-aware In-context Learning Correction for Entity-level Financial Sentiment Analysis
Senbin Zhu | ChenYuan He | Hongde Liu | Pengcheng Dong | Hanjie Zhao | Yuchen Yan | Yuxiang Jia | Hongying Zan | Min Peng
Proceedings of the 31st International Conference on Computational Linguistics

In recent years, fine-grained sentiment analysis in finance has gained significant attention, but the scarcity of entity-level datasets remains a key challenge. To address this, we have constructed the largest English and Chinese financial entity-level sentiment analysis datasets to date. Building on this foundation, we propose a novel two-stage sentiment analysis approach called Self-aware In-context Learning Correction (SILC). The first stage involves fine-tuning a base large language model to generate pseudo-labeled data specific to our task. In the second stage, we train a correction model using a GNN-based example retriever, which is informed by the pseudo-labeled data. This two-stage strategy has allowed us to achieve state-of-the-art performance on the newly constructed datasets, advancing the field of financial sentiment analysis. In a case study, we demonstrate the enhanced practical utility of our data and methods in monitoring the cryptocurrency market. Our datasets and code are available at https://github.com/NLP-Bin/SILC-EFSA.

2024

pdf bib
FaiMA: Feature-aware In-context Learning for Multi-domain Aspect-based Sentiment Analysis
Songhua Yang | Xinke Jiang | Hanjie Zhao | Wenxuan Zeng | Hongde Liu | Yuxiang Jia
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Multi-domain aspect-based sentiment analysis (ABSA) seeks to capture fine-grained sentiment across diverse domains. While existing research narrowly focuses on single-domain applications constrained by methodological limitations and data scarcity, the reality is that sentiment naturally traverses multiple domains. Although large language models (LLMs) offer a promising solution for ABSA, it is difficult to integrate effectively with established techniques, including graph-based models and linguistics, because modifying their internal architecture is not easy. To alleviate this problem, we propose a novel framework, Feature-aware In-context Learning for Multi-domain ABSA (FaiMA). The core insight of FaiMA is to utilize in-context learning (ICL) as a feature-aware mechanism that facilitates adaptive learning in multi-domain ABSA tasks. Specifically, we employ a multi-head graph attention network as a text encoder optimized by heuristic rules for linguistic, domain, and sentiment features. Through contrastive learning, we optimize sentence representations by focusing on these diverse features. Additionally, we construct an efficient indexing mechanism, allowing FaiMA to stably retrieve highly relevant examples across multiple dimensions for any given input. To evaluate the efficacy of FaiMA, we build the first multi-domain ABSA benchmark dataset. Extensive experimental results demonstrate that FaiMA achieves significant performance improvements in multiple domains compared to baselines, increasing F1 by 2.07% on average. Source code and data sets are available at https://github.com/SupritYoung/FaiMA.