Hongyan Wu


2025

pdf bib
Pseudo-label Data Construction Method and Syntax-enhanced Model for Chinese Semantic Error Recognition
Hongyan Wu | Nankai Lin | Shengyi Jiang | Lianxi Wang | Aimin Yang
Proceedings of the 31st International Conference on Computational Linguistics

Chinese Semantic Error Recognition (CSER) has always been a weak link in Chinese language processing due to the complexity and obscureness of Chinese semantics. Existing research has gradually focused on leveraging pre-trained models to perform CSER. Although some researchers have attempted to integrate syntax information into the pre-trained language model, it requires training the models from scratch, which is time-consuming and laborious. Furthermore, despite the existence of datasets for CSER, the constrained size of these datasets impairs the performance of the models. Thus, in order to address the difficulty posed by a limited sample set and the need of annotating samples with semantic-level errors, we propose a Pseudo-label Data Construction method for CSER (PDC-CSER), generating pseudo-labels for augmented samples based on perplexity and model respectively, which overcomes the difficulty of constructing pseudo-label data containing semantic-level errors and ensures the quality of pseudo-labels. Moreover, we propose a CSER method with the Dependency Syntactic Attention mechanism (CSER-DSA) to explicitly infuse dependency syntactic information only in the fine-tuning stage, achieving robust performance, and simultaneously reducing substantial computing power and time cost. Results demonstrate that the pseudo-label technology PDC-CSER and the semantic error recognition method CSER-DSA surpass the existing models

2024

pdf bib
IndoCL: Benchmarking Indonesian Language Development Assessment
Nankai Lin | Hongyan Wu | Weixiong Zheng | Xingming Liao | Shengyi Jiang | Aimin Yang | Lixian Xiao
Findings of the Association for Computational Linguistics: EMNLP 2024

Recently, the field of language acquisition (LA) has significantly benefited from natural language processing technologies. A crucial task in LA involves tracking the evolution of language learners’ competence, namely language development assessment (LDA). However, the majority of LDA research focuses on high-resource languages, with limited attention directed toward low-resource languages. Moreover, existing methodologies primarily depend on linguistic rules and language characteristics, with a limited exploration of exploiting pre-trained language models (PLMs) for LDA. In this paper, we construct the IndoCL corpus (Indonesian Corpus of L2 Learners), which comprises compositions written by undergraduate students majoring in Indonesian language. Moreover, we propose a model for LDA tasks, which automatically extracts language-independent features, relieving laborious computation and reliance on specific language. The proposed model uses sequential information attention and similarity representation learning to capture the differences and common information from the first-written and second-written essays, respectively. It has demonstrated remarkable performance on both our self-constructed corpus and publicly available corpora. Our work could serve as a novel benchmark for Indonesian LDA tasks. We also explore the feasibility of using existing large-scale language models (LLMs) for LDA tasks. The results show significant potential for improving LLM performance in LDA tasks.